L(s) = 1 | + 9-s + 2·13-s − 12·17-s − 10·25-s − 12·29-s + 4·37-s − 24·41-s − 10·49-s + 12·53-s + 4·61-s + 28·73-s + 81-s − 20·97-s + 36·101-s + 28·109-s + 12·113-s + 2·117-s − 22·121-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s − 12·153-s + 157-s + 163-s + ⋯ |
L(s) = 1 | + 1/3·9-s + 0.554·13-s − 2.91·17-s − 2·25-s − 2.22·29-s + 0.657·37-s − 3.74·41-s − 1.42·49-s + 1.64·53-s + 0.512·61-s + 3.27·73-s + 1/9·81-s − 2.03·97-s + 3.58·101-s + 2.68·109-s + 1.12·113-s + 0.184·117-s − 2·121-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + 0.0819·149-s + 0.0813·151-s − 0.970·153-s + 0.0798·157-s + 0.0783·163-s + ⋯ |
Λ(s)=(=(97344s/2ΓC(s)2L(s)−Λ(2−s)
Λ(s)=(=(97344s/2ΓC(s+1/2)2L(s)−Λ(1−s)
Degree: |
4 |
Conductor: |
97344
= 26⋅32⋅132
|
Sign: |
−1
|
Analytic conductor: |
6.20673 |
Root analytic conductor: |
1.57839 |
Motivic weight: |
1 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
1
|
Selberg data: |
(4, 97344, ( :1/2,1/2), −1)
|
Particular Values
L(1) |
= |
0 |
L(21) |
= |
0 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | | 1 |
| 3 | C1×C1 | (1−T)(1+T) |
| 13 | C1 | (1−T)2 |
good | 5 | C2 | (1+pT2)2 |
| 7 | C2 | (1−2T+pT2)(1+2T+pT2) |
| 11 | C2 | (1+pT2)2 |
| 17 | C2 | (1+6T+pT2)2 |
| 19 | C2 | (1−2T+pT2)(1+2T+pT2) |
| 23 | C2 | (1+pT2)2 |
| 29 | C2 | (1+6T+pT2)2 |
| 31 | C2 | (1−2T+pT2)(1+2T+pT2) |
| 37 | C2 | (1−2T+pT2)2 |
| 41 | C2 | (1+12T+pT2)2 |
| 43 | C2 | (1−4T+pT2)(1+4T+pT2) |
| 47 | C2 | (1+pT2)2 |
| 53 | C2 | (1−6T+pT2)2 |
| 59 | C2 | (1−12T+pT2)(1+12T+pT2) |
| 61 | C2 | (1−2T+pT2)2 |
| 67 | C2 | (1−10T+pT2)(1+10T+pT2) |
| 71 | C2 | (1−12T+pT2)(1+12T+pT2) |
| 73 | C2 | (1−14T+pT2)2 |
| 79 | C2 | (1−8T+pT2)(1+8T+pT2) |
| 83 | C2 | (1−12T+pT2)(1+12T+pT2) |
| 89 | C2 | (1+pT2)2 |
| 97 | C2 | (1+10T+pT2)2 |
show more | | |
show less | | |
L(s)=p∏ j=1∏4(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.385896632264966978634773161619, −8.735814680045936069504206621070, −8.531128945035369322451694692338, −7.86871640882441783507560416572, −7.32625330559643707687229250500, −6.65843891177652373785895186115, −6.49558938607564697804430447032, −5.75513068077913273540546960045, −5.11454570698520102977754794044, −4.55277073254635650297368891844, −3.80067854107620357152276821608, −3.54130855144350797063436114136, −2.03881758362108754018941589683, −2.01665432147547119953995139615, 0,
2.01665432147547119953995139615, 2.03881758362108754018941589683, 3.54130855144350797063436114136, 3.80067854107620357152276821608, 4.55277073254635650297368891844, 5.11454570698520102977754794044, 5.75513068077913273540546960045, 6.49558938607564697804430447032, 6.65843891177652373785895186115, 7.32625330559643707687229250500, 7.86871640882441783507560416572, 8.531128945035369322451694692338, 8.735814680045936069504206621070, 9.385896632264966978634773161619