Properties

Label 4-312e2-1.1-c1e2-0-46
Degree $4$
Conductor $97344$
Sign $-1$
Analytic cond. $6.20673$
Root an. cond. $1.57839$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $1$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 9-s + 2·13-s − 12·17-s − 10·25-s − 12·29-s + 4·37-s − 24·41-s − 10·49-s + 12·53-s + 4·61-s + 28·73-s + 81-s − 20·97-s + 36·101-s + 28·109-s + 12·113-s + 2·117-s − 22·121-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s − 12·153-s + 157-s + 163-s + ⋯
L(s)  = 1  + 1/3·9-s + 0.554·13-s − 2.91·17-s − 2·25-s − 2.22·29-s + 0.657·37-s − 3.74·41-s − 1.42·49-s + 1.64·53-s + 0.512·61-s + 3.27·73-s + 1/9·81-s − 2.03·97-s + 3.58·101-s + 2.68·109-s + 1.12·113-s + 0.184·117-s − 2·121-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + 0.0819·149-s + 0.0813·151-s − 0.970·153-s + 0.0798·157-s + 0.0783·163-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 97344 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 97344 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(97344\)    =    \(2^{6} \cdot 3^{2} \cdot 13^{2}\)
Sign: $-1$
Analytic conductor: \(6.20673\)
Root analytic conductor: \(1.57839\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((4,\ 97344,\ (\ :1/2, 1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
3$C_1$$\times$$C_1$ \( ( 1 - T )( 1 + T ) \)
13$C_1$ \( ( 1 - T )^{2} \)
good5$C_2$ \( ( 1 + p T^{2} )^{2} \)
7$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
11$C_2$ \( ( 1 + p T^{2} )^{2} \)
17$C_2$ \( ( 1 + 6 T + p T^{2} )^{2} \)
19$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
23$C_2$ \( ( 1 + p T^{2} )^{2} \)
29$C_2$ \( ( 1 + 6 T + p T^{2} )^{2} \)
31$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
37$C_2$ \( ( 1 - 2 T + p T^{2} )^{2} \)
41$C_2$ \( ( 1 + 12 T + p T^{2} )^{2} \)
43$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
47$C_2$ \( ( 1 + p T^{2} )^{2} \)
53$C_2$ \( ( 1 - 6 T + p T^{2} )^{2} \)
59$C_2$ \( ( 1 - 12 T + p T^{2} )( 1 + 12 T + p T^{2} ) \)
61$C_2$ \( ( 1 - 2 T + p T^{2} )^{2} \)
67$C_2$ \( ( 1 - 10 T + p T^{2} )( 1 + 10 T + p T^{2} ) \)
71$C_2$ \( ( 1 - 12 T + p T^{2} )( 1 + 12 T + p T^{2} ) \)
73$C_2$ \( ( 1 - 14 T + p T^{2} )^{2} \)
79$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + 8 T + p T^{2} ) \)
83$C_2$ \( ( 1 - 12 T + p T^{2} )( 1 + 12 T + p T^{2} ) \)
89$C_2$ \( ( 1 + p T^{2} )^{2} \)
97$C_2$ \( ( 1 + 10 T + p T^{2} )^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.385896632264966978634773161619, −8.735814680045936069504206621070, −8.531128945035369322451694692338, −7.86871640882441783507560416572, −7.32625330559643707687229250500, −6.65843891177652373785895186115, −6.49558938607564697804430447032, −5.75513068077913273540546960045, −5.11454570698520102977754794044, −4.55277073254635650297368891844, −3.80067854107620357152276821608, −3.54130855144350797063436114136, −2.03881758362108754018941589683, −2.01665432147547119953995139615, 0, 2.01665432147547119953995139615, 2.03881758362108754018941589683, 3.54130855144350797063436114136, 3.80067854107620357152276821608, 4.55277073254635650297368891844, 5.11454570698520102977754794044, 5.75513068077913273540546960045, 6.49558938607564697804430447032, 6.65843891177652373785895186115, 7.32625330559643707687229250500, 7.86871640882441783507560416572, 8.531128945035369322451694692338, 8.735814680045936069504206621070, 9.385896632264966978634773161619

Graph of the $Z$-function along the critical line