L(s) = 1 | + 6·3-s − 4·5-s − 20·7-s + 27·9-s − 60·11-s − 26·13-s − 24·15-s − 84·17-s − 60·19-s − 120·21-s − 72·23-s − 210·25-s + 108·27-s − 124·29-s − 108·31-s − 360·33-s + 80·35-s + 36·37-s − 156·39-s − 52·41-s − 32·43-s − 108·45-s − 428·47-s − 134·49-s − 504·51-s + 380·53-s + 240·55-s + ⋯ |
L(s) = 1 | + 1.15·3-s − 0.357·5-s − 1.07·7-s + 9-s − 1.64·11-s − 0.554·13-s − 0.413·15-s − 1.19·17-s − 0.724·19-s − 1.24·21-s − 0.652·23-s − 1.67·25-s + 0.769·27-s − 0.794·29-s − 0.625·31-s − 1.89·33-s + 0.386·35-s + 0.159·37-s − 0.640·39-s − 0.198·41-s − 0.113·43-s − 0.357·45-s − 1.32·47-s − 0.390·49-s − 1.38·51-s + 0.984·53-s + 0.588·55-s + ⋯ |
Λ(s)=(=(97344s/2ΓC(s)2L(s)Λ(4−s)
Λ(s)=(=(97344s/2ΓC(s+3/2)2L(s)Λ(1−s)
Degree: |
4 |
Conductor: |
97344
= 26⋅32⋅132
|
Sign: |
1
|
Analytic conductor: |
338.876 |
Root analytic conductor: |
4.29052 |
Motivic weight: |
3 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
2
|
Selberg data: |
(4, 97344, ( :3/2,3/2), 1)
|
Particular Values
L(2) |
= |
0 |
L(21) |
= |
0 |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | | 1 |
| 3 | C1 | (1−pT)2 |
| 13 | C1 | (1+pT)2 |
good | 5 | D4 | 1+4T+226T2+4p3T3+p6T4 |
| 7 | D4 | 1+20T+534T2+20p3T3+p6T4 |
| 11 | D4 | 1+60T+3114T2+60p3T3+p6T4 |
| 17 | D4 | 1+84T+10582T2+84p3T3+p6T4 |
| 19 | D4 | 1+60T+6526T2+60p3T3+p6T4 |
| 23 | D4 | 1+72T+14430T2+72p3T3+p6T4 |
| 29 | D4 | 1+124T−1586T2+124p3T3+p6T4 |
| 31 | D4 | 1+108T−16154T2+108p3T3+p6T4 |
| 37 | D4 | 1−36T+42382T2−36p3T3+p6T4 |
| 41 | D4 | 1+52T+76666T2+52p3T3+p6T4 |
| 43 | D4 | 1+32T+150198T2+32p3T3+p6T4 |
| 47 | D4 | 1+428T+116242T2+428p3T3+p6T4 |
| 53 | D4 | 1−380T+258142T2−380p3T3+p6T4 |
| 59 | D4 | 1+1420T+882490T2+1420p3T3+p6T4 |
| 61 | D4 | 1−1012T+708206T2−1012p3T3+p6T4 |
| 67 | D4 | 1+844T+778238T2+844p3T3+p6T4 |
| 71 | D4 | 1+868T+888050T2+868p3T3+p6T4 |
| 73 | D4 | 1+60T+114886T2+60p3T3+p6T4 |
| 79 | D4 | 1−272T+993374T2−272p3T3+p6T4 |
| 83 | D4 | 1+1252T+1118698T2+1252p3T3+p6T4 |
| 89 | D4 | 1−572T+853306T2−572p3T3+p6T4 |
| 97 | D4 | 1−708T+1762390T2−708p3T3+p6T4 |
show more | | |
show less | | |
L(s)=p∏ j=1∏4(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.95022448435788984664116694516, −10.32562671646902159028816148497, −9.993498419882439564928277611599, −9.734403784483738748995039249710, −8.911621503580280151647705856309, −8.842982570830159360008184520910, −8.028751454148506341239027958314, −7.72187164675514945245562756759, −7.34869108573832431349859057970, −6.73373998475477755736772247052, −6.05350067582724653057719832987, −5.64994998988630759394864214797, −4.55562015057282169677214473534, −4.45692626904635966156228758992, −3.33770158113213474685252645889, −3.26800874539872326447758293689, −2.13155032319669596782182198073, −2.06605078619900576989463972130, 0, 0,
2.06605078619900576989463972130, 2.13155032319669596782182198073, 3.26800874539872326447758293689, 3.33770158113213474685252645889, 4.45692626904635966156228758992, 4.55562015057282169677214473534, 5.64994998988630759394864214797, 6.05350067582724653057719832987, 6.73373998475477755736772247052, 7.34869108573832431349859057970, 7.72187164675514945245562756759, 8.028751454148506341239027958314, 8.842982570830159360008184520910, 8.911621503580280151647705856309, 9.734403784483738748995039249710, 9.993498419882439564928277611599, 10.32562671646902159028816148497, 10.95022448435788984664116694516