L(s) = 1 | + 2·3-s − 2·5-s + 2·7-s + 3·9-s − 8·11-s + 4·13-s − 4·15-s − 10·17-s + 2·19-s + 4·21-s − 4·25-s + 4·27-s − 10·29-s − 4·31-s − 16·33-s − 4·35-s + 4·37-s + 8·39-s − 4·41-s − 4·43-s − 6·45-s − 10·47-s + 3·49-s − 20·51-s − 2·53-s + 16·55-s + 4·57-s + ⋯ |
L(s) = 1 | + 1.15·3-s − 0.894·5-s + 0.755·7-s + 9-s − 2.41·11-s + 1.10·13-s − 1.03·15-s − 2.42·17-s + 0.458·19-s + 0.872·21-s − 4/5·25-s + 0.769·27-s − 1.85·29-s − 0.718·31-s − 2.78·33-s − 0.676·35-s + 0.657·37-s + 1.28·39-s − 0.624·41-s − 0.609·43-s − 0.894·45-s − 1.45·47-s + 3/7·49-s − 2.80·51-s − 0.274·53-s + 2.15·55-s + 0.529·57-s + ⋯ |
Λ(s)=(=(10188864s/2ΓC(s)2L(s)Λ(2−s)
Λ(s)=(=(10188864s/2ΓC(s+1/2)2L(s)Λ(1−s)
Degree: |
4 |
Conductor: |
10188864
= 26⋅32⋅72⋅192
|
Sign: |
1
|
Analytic conductor: |
649.650 |
Root analytic conductor: |
5.04858 |
Motivic weight: |
1 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
2
|
Selberg data: |
(4, 10188864, ( :1/2,1/2), 1)
|
Particular Values
L(1) |
= |
0 |
L(21) |
= |
0 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | | 1 |
| 3 | C1 | (1−T)2 |
| 7 | C1 | (1−T)2 |
| 19 | C1 | (1−T)2 |
good | 5 | D4 | 1+2T+8T2+2pT3+p2T4 |
| 11 | C2 | (1+4T+pT2)2 |
| 13 | D4 | 1−4T+18T2−4pT3+p2T4 |
| 17 | D4 | 1+10T+56T2+10pT3+p2T4 |
| 23 | C22 | 1−2T2+p2T4 |
| 29 | D4 | 1+10T+80T2+10pT3+p2T4 |
| 31 | C2 | (1+2T+pT2)2 |
| 37 | D4 | 1−4T+30T2−4pT3+p2T4 |
| 41 | D4 | 1+4T+38T2+4pT3+p2T4 |
| 43 | D4 | 1+4T+42T2+4pT3+p2T4 |
| 47 | D4 | 1+10T+92T2+10pT3+p2T4 |
| 53 | D4 | 1+2T+32T2+2pT3+p2T4 |
| 59 | D4 | 1+8T+86T2+8pT3+p2T4 |
| 61 | D4 | 1+12T+110T2+12pT3+p2T4 |
| 67 | D4 | 1−4T+126T2−4pT3+p2T4 |
| 71 | D4 | 1+2T+116T2+2pT3+p2T4 |
| 73 | C22 | 1+38T2+p2T4 |
| 79 | D4 | 1+8T+126T2+8pT3+p2T4 |
| 83 | D4 | 1−6T+148T2−6pT3+p2T4 |
| 89 | C2 | (1+6T+pT2)2 |
| 97 | D4 | 1+4T+6T2+4pT3+p2T4 |
show more | | |
show less | | |
L(s)=p∏ j=1∏4(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.233094778261918892145358667709, −8.215080694543461831295586226946, −7.73591949671411004845472382152, −7.69077403006010244619603218209, −7.01509303503386221066223596200, −6.96597955757863350195984661075, −6.10424659975622265851487578233, −5.91836790843344527318839669470, −5.24732949074927538314814056862, −4.99746464758065943525636689581, −4.38183196384062589024908734169, −4.32522413119396594845933725526, −3.51066016760584286453364321721, −3.48395451475226006682558209041, −2.74266292618532147556381359504, −2.38738853561610578284772266510, −1.83437597084645015196398689254, −1.50974378961662278794505562502, 0, 0,
1.50974378961662278794505562502, 1.83437597084645015196398689254, 2.38738853561610578284772266510, 2.74266292618532147556381359504, 3.48395451475226006682558209041, 3.51066016760584286453364321721, 4.32522413119396594845933725526, 4.38183196384062589024908734169, 4.99746464758065943525636689581, 5.24732949074927538314814056862, 5.91836790843344527318839669470, 6.10424659975622265851487578233, 6.96597955757863350195984661075, 7.01509303503386221066223596200, 7.69077403006010244619603218209, 7.73591949671411004845472382152, 8.215080694543461831295586226946, 8.233094778261918892145358667709