L(s) = 1 | + 2-s − 3-s + 4-s − 2·5-s − 6-s + 2·7-s + 8-s − 9-s − 2·10-s + 5·11-s − 12-s − 6·13-s + 2·14-s + 2·15-s + 16-s − 3·17-s − 18-s − 3·19-s − 2·20-s − 2·21-s + 5·22-s − 2·23-s − 24-s − 25-s − 6·26-s + 2·28-s − 2·29-s + ⋯ |
L(s) = 1 | + 0.707·2-s − 0.577·3-s + 1/2·4-s − 0.894·5-s − 0.408·6-s + 0.755·7-s + 0.353·8-s − 1/3·9-s − 0.632·10-s + 1.50·11-s − 0.288·12-s − 1.66·13-s + 0.534·14-s + 0.516·15-s + 1/4·16-s − 0.727·17-s − 0.235·18-s − 0.688·19-s − 0.447·20-s − 0.436·21-s + 1.06·22-s − 0.417·23-s − 0.204·24-s − 1/5·25-s − 1.17·26-s + 0.377·28-s − 0.371·29-s + ⋯ |
Λ(s)=(=(3200s/2ΓC(s)2L(s)Λ(2−s)
Λ(s)=(=(3200s/2ΓC(s+1/2)2L(s)Λ(1−s)
Degree: |
4 |
Conductor: |
3200
= 27⋅52
|
Sign: |
1
|
Analytic conductor: |
0.204034 |
Root analytic conductor: |
0.672087 |
Motivic weight: |
1 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
yes
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(4, 3200, ( :1/2,1/2), 1)
|
Particular Values
L(1) |
≈ |
0.8447804386 |
L(21) |
≈ |
0.8447804386 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | C1 | 1−T |
| 5 | C2 | 1+2T+pT2 |
good | 3 | D4 | 1+T+2T2+pT3+p2T4 |
| 7 | D4 | 1−2T−2T2−2pT3+p2T4 |
| 11 | D4 | 1−5T+18T2−5pT3+p2T4 |
| 13 | C22 | 1+6T+18T2+6pT3+p2T4 |
| 17 | D4 | 1+3T+8T2+3pT3+p2T4 |
| 19 | C2×C2 | (1−4T+pT2)(1+7T+pT2) |
| 23 | D4 | 1+2T+30T2+2pT3+p2T4 |
| 29 | C2×C2 | (1−8T+pT2)(1+10T+pT2) |
| 31 | D4 | 1+2T+30T2+2pT3+p2T4 |
| 37 | C2 | (1−10T+pT2)(1+10T+pT2) |
| 41 | C2×C2 | (1−10T+pT2)(1+3T+pT2) |
| 43 | C2×C2 | (1−12T+pT2)(1+4T+pT2) |
| 47 | D4 | 1−4T+30T2−4pT3+p2T4 |
| 53 | D4 | 1−12T+110T2−12pT3+p2T4 |
| 59 | C2×C2 | (1−12T+pT2)(1+8T+pT2) |
| 61 | D4 | 1−4T+78T2−4pT3+p2T4 |
| 67 | C2×C2 | (1−9T+pT2)(1+12T+pT2) |
| 71 | C2×C2 | (1−8T+pT2)(1+4T+pT2) |
| 73 | D4 | 1+9T+148T2+9pT3+p2T4 |
| 79 | D4 | 1−2T+30T2−2pT3+p2T4 |
| 83 | D4 | 1+7T+58T2+7pT3+p2T4 |
| 89 | D4 | 1−T+104T2−pT3+p2T4 |
| 97 | C2×C2 | (1−2T+pT2)(1+18T+pT2) |
show more | | |
show less | | |
L(s)=p∏ j=1∏4(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−17.8386888090, −17.5442935528, −17.0406118416, −16.6830275380, −16.0375643724, −15.3376859404, −14.8992914148, −14.4951797316, −14.0916295383, −13.2859500860, −12.4635176254, −12.1027752387, −11.6716606275, −11.2189813326, −10.6912421483, −9.76484458202, −9.02826212357, −8.31851072904, −7.39410638864, −7.07901565704, −6.06748159208, −5.38854611424, −4.30327828737, −4.06396508747, −2.35093004831,
2.35093004831, 4.06396508747, 4.30327828737, 5.38854611424, 6.06748159208, 7.07901565704, 7.39410638864, 8.31851072904, 9.02826212357, 9.76484458202, 10.6912421483, 11.2189813326, 11.6716606275, 12.1027752387, 12.4635176254, 13.2859500860, 14.0916295383, 14.4951797316, 14.8992914148, 15.3376859404, 16.0375643724, 16.6830275380, 17.0406118416, 17.5442935528, 17.8386888090