L(s) = 1 | − 4·5-s + 10·13-s − 10·17-s + 11·25-s − 10·37-s + 16·41-s − 10·53-s + 24·61-s − 40·65-s + 10·73-s − 9·81-s + 40·85-s + 10·97-s − 4·101-s + 30·113-s + 22·121-s − 24·125-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + 167-s + 50·169-s + ⋯ |
L(s) = 1 | − 1.78·5-s + 2.77·13-s − 2.42·17-s + 11/5·25-s − 1.64·37-s + 2.49·41-s − 1.37·53-s + 3.07·61-s − 4.96·65-s + 1.17·73-s − 81-s + 4.33·85-s + 1.01·97-s − 0.398·101-s + 2.82·113-s + 2·121-s − 2.14·125-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + 0.0819·149-s + 0.0813·151-s + 0.0798·157-s + 0.0783·163-s + 0.0773·167-s + 3.84·169-s + ⋯ |
Λ(s)=(=(102400s/2ΓC(s)2L(s)Λ(2−s)
Λ(s)=(=(102400s/2ΓC(s+1/2)2L(s)Λ(1−s)
Degree: |
4 |
Conductor: |
102400
= 212⋅52
|
Sign: |
1
|
Analytic conductor: |
6.52911 |
Root analytic conductor: |
1.59850 |
Motivic weight: |
1 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(4, 102400, ( :1/2,1/2), 1)
|
Particular Values
L(1) |
≈ |
1.028080073 |
L(21) |
≈ |
1.028080073 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | | 1 |
| 5 | C2 | 1+4T+pT2 |
good | 3 | C22 | 1+p2T4 |
| 7 | C22 | 1+p2T4 |
| 11 | C2 | (1−pT2)2 |
| 13 | C2 | (1−6T+pT2)(1−4T+pT2) |
| 17 | C2 | (1+2T+pT2)(1+8T+pT2) |
| 19 | C2 | (1+pT2)2 |
| 23 | C22 | 1+p2T4 |
| 29 | C2 | (1−10T+pT2)(1+10T+pT2) |
| 31 | C2 | (1−pT2)2 |
| 37 | C2 | (1−2T+pT2)(1+12T+pT2) |
| 41 | C2 | (1−8T+pT2)2 |
| 43 | C22 | 1+p2T4 |
| 47 | C22 | 1+p2T4 |
| 53 | C2 | (1−4T+pT2)(1+14T+pT2) |
| 59 | C2 | (1+pT2)2 |
| 61 | C2 | (1−12T+pT2)2 |
| 67 | C22 | 1+p2T4 |
| 71 | C2 | (1−pT2)2 |
| 73 | C2 | (1−16T+pT2)(1+6T+pT2) |
| 79 | C2 | (1+pT2)2 |
| 83 | C22 | 1+p2T4 |
| 89 | C2 | (1−10T+pT2)(1+10T+pT2) |
| 97 | C2 | (1−18T+pT2)(1+8T+pT2) |
show more | | |
show less | | |
L(s)=p∏ j=1∏4(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.45823637494045206387330414327, −11.34802083647064143476429057640, −11.17739061108679690381095781286, −10.75088767626022843866068533848, −10.21521912329344702226891179652, −9.290739722645913941443564781581, −8.753983348100711241549479155291, −8.674534544629272867030782860446, −8.203325745555624988059499181647, −7.65282297564612043595752202219, −7.00036321406455903231163002005, −6.59336922864393581770584593663, −6.17080292838263670808391925213, −5.40503843578542021326014796610, −4.55279357045582279894781279974, −4.12396539936214544141183389183, −3.73628229388653838275156087841, −3.12558842572288379734781975579, −2.02547983030528401194618204137, −0.76085770125354409810161120625,
0.76085770125354409810161120625, 2.02547983030528401194618204137, 3.12558842572288379734781975579, 3.73628229388653838275156087841, 4.12396539936214544141183389183, 4.55279357045582279894781279974, 5.40503843578542021326014796610, 6.17080292838263670808391925213, 6.59336922864393581770584593663, 7.00036321406455903231163002005, 7.65282297564612043595752202219, 8.203325745555624988059499181647, 8.674534544629272867030782860446, 8.753983348100711241549479155291, 9.290739722645913941443564781581, 10.21521912329344702226891179652, 10.75088767626022843866068533848, 11.17739061108679690381095781286, 11.34802083647064143476429057640, 11.45823637494045206387330414327