L(s) = 1 | + 2·3-s − 2·5-s + 2·7-s + 2·9-s + 8·11-s − 6·13-s − 4·15-s − 6·17-s + 4·21-s + 6·23-s − 25-s + 6·27-s + 4·29-s + 16·33-s − 4·35-s − 6·37-s − 12·39-s + 12·41-s − 6·43-s − 4·45-s + 18·47-s + 2·49-s − 12·51-s + 10·53-s − 16·55-s + 4·63-s + 12·65-s + ⋯ |
L(s) = 1 | + 1.15·3-s − 0.894·5-s + 0.755·7-s + 2/3·9-s + 2.41·11-s − 1.66·13-s − 1.03·15-s − 1.45·17-s + 0.872·21-s + 1.25·23-s − 1/5·25-s + 1.15·27-s + 0.742·29-s + 2.78·33-s − 0.676·35-s − 0.986·37-s − 1.92·39-s + 1.87·41-s − 0.914·43-s − 0.596·45-s + 2.62·47-s + 2/7·49-s − 1.68·51-s + 1.37·53-s − 2.15·55-s + 0.503·63-s + 1.48·65-s + ⋯ |
Λ(s)=(=(102400s/2ΓC(s)2L(s)Λ(2−s)
Λ(s)=(=(102400s/2ΓC(s+1/2)2L(s)Λ(1−s)
Degree: |
4 |
Conductor: |
102400
= 212⋅52
|
Sign: |
1
|
Analytic conductor: |
6.52911 |
Root analytic conductor: |
1.59850 |
Motivic weight: |
1 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(4, 102400, ( :1/2,1/2), 1)
|
Particular Values
L(1) |
≈ |
2.252134334 |
L(21) |
≈ |
2.252134334 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | | 1 |
| 5 | C2 | 1+2T+pT2 |
good | 3 | C22 | 1−2T+2T2−2pT3+p2T4 |
| 7 | C22 | 1−2T+2T2−2pT3+p2T4 |
| 11 | C2 | (1−4T+pT2)2 |
| 13 | C22 | 1+6T+18T2+6pT3+p2T4 |
| 17 | C2 | (1−2T+pT2)(1+8T+pT2) |
| 19 | C22 | 1−2T2+p2T4 |
| 23 | C22 | 1−6T+18T2−6pT3+p2T4 |
| 29 | C2 | (1−2T+pT2)2 |
| 31 | C22 | 1−26T2+p2T4 |
| 37 | C22 | 1+6T+18T2+6pT3+p2T4 |
| 41 | C2 | (1−6T+pT2)2 |
| 43 | C22 | 1+6T+18T2+6pT3+p2T4 |
| 47 | C22 | 1−18T+162T2−18pT3+p2T4 |
| 53 | C2 | (1−14T+pT2)(1+4T+pT2) |
| 59 | C22 | 1−18T2+p2T4 |
| 61 | C2 | (1−10T+pT2)(1+10T+pT2) |
| 67 | C22 | 1+18T+162T2+18pT3+p2T4 |
| 71 | C22 | 1−106T2+p2T4 |
| 73 | C2 | (1−16T+pT2)(1+6T+pT2) |
| 79 | C2 | (1+pT2)2 |
| 83 | C22 | 1+6T+18T2+6pT3+p2T4 |
| 89 | C2 | (1−pT2)2 |
| 97 | C22 | 1+14T+98T2+14pT3+p2T4 |
show more | | |
show less | | |
L(s)=p∏ j=1∏4(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.81113829924476911159363322084, −11.61430812631216105871510866690, −10.90084021176686885646320573268, −10.59988447635737109397568659638, −9.872085441494781428469158973204, −9.173714116762044901093328545790, −9.080884202459432893602604602317, −8.699215331916632323856246555226, −8.194058849569125180362096735563, −7.52852954767173224025226745630, −7.00410605261467062306638326401, −6.96678563256221610647661711931, −6.14282944022681839691336982259, −5.21359479119464999923726927145, −4.38548362701850026288655848623, −4.36018674895597463202904052663, −3.67802525611135460159399783198, −2.78602271721816750954710911455, −2.23191198852958141835641901402, −1.14701040917596716806492373676,
1.14701040917596716806492373676, 2.23191198852958141835641901402, 2.78602271721816750954710911455, 3.67802525611135460159399783198, 4.36018674895597463202904052663, 4.38548362701850026288655848623, 5.21359479119464999923726927145, 6.14282944022681839691336982259, 6.96678563256221610647661711931, 7.00410605261467062306638326401, 7.52852954767173224025226745630, 8.194058849569125180362096735563, 8.699215331916632323856246555226, 9.080884202459432893602604602317, 9.173714116762044901093328545790, 9.872085441494781428469158973204, 10.59988447635737109397568659638, 10.90084021176686885646320573268, 11.61430812631216105871510866690, 11.81113829924476911159363322084