L(s) = 1 | + 2·5-s − 2·9-s − 4·11-s − 12·19-s − 25-s − 4·29-s − 4·41-s − 4·45-s + 6·49-s − 8·55-s − 4·59-s − 12·61-s − 8·71-s + 16·79-s − 5·81-s + 4·89-s − 24·95-s + 8·99-s + 12·101-s + 20·109-s − 6·121-s − 12·125-s + 127-s + 131-s + 137-s + 139-s − 8·145-s + ⋯ |
L(s) = 1 | + 0.894·5-s − 2/3·9-s − 1.20·11-s − 2.75·19-s − 1/5·25-s − 0.742·29-s − 0.624·41-s − 0.596·45-s + 6/7·49-s − 1.07·55-s − 0.520·59-s − 1.53·61-s − 0.949·71-s + 1.80·79-s − 5/9·81-s + 0.423·89-s − 2.46·95-s + 0.804·99-s + 1.19·101-s + 1.91·109-s − 0.545·121-s − 1.07·125-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s − 0.664·145-s + ⋯ |
Λ(s)=(=(102400s/2ΓC(s)2L(s)−Λ(2−s)
Λ(s)=(=(102400s/2ΓC(s+1/2)2L(s)−Λ(1−s)
Degree: |
4 |
Conductor: |
102400
= 212⋅52
|
Sign: |
−1
|
Analytic conductor: |
6.52911 |
Root analytic conductor: |
1.59850 |
Motivic weight: |
1 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
yes
|
Self-dual: |
yes
|
Analytic rank: |
1
|
Selberg data: |
(4, 102400, ( :1/2,1/2), −1)
|
Particular Values
L(1) |
= |
0 |
L(21) |
= |
0 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | | 1 |
| 5 | C2 | 1−2T+pT2 |
good | 3 | C2 | (1−2T+pT2)(1+2T+pT2) |
| 7 | C22 | 1−6T2+p2T4 |
| 11 | C2×C2 | (1+pT2)(1+4T+pT2) |
| 13 | C22 | 1+6T2+p2T4 |
| 17 | C22 | 1+14T2+p2T4 |
| 19 | C2×C2 | (1+4T+pT2)(1+8T+pT2) |
| 23 | C22 | 1+26T2+p2T4 |
| 29 | C2×C2 | (1−2T+pT2)(1+6T+pT2) |
| 31 | C2 | (1−8T+pT2)(1+8T+pT2) |
| 37 | C22 | 1+6T2+p2T4 |
| 41 | C2×C2 | (1−6T+pT2)(1+10T+pT2) |
| 43 | C22 | 1+18T2+p2T4 |
| 47 | C22 | 1−54T2+p2T4 |
| 53 | C22 | 1−10T2+p2T4 |
| 59 | C2×C2 | (1−8T+pT2)(1+12T+pT2) |
| 61 | C2×C2 | (1−2T+pT2)(1+14T+pT2) |
| 67 | C22 | 1+66T2+p2T4 |
| 71 | C2×C2 | (1+pT2)(1+8T+pT2) |
| 73 | C22 | 1+30T2+p2T4 |
| 79 | C2 | (1−8T+pT2)2 |
| 83 | C22 | 1−62T2+p2T4 |
| 89 | C2×C2 | (1−10T+pT2)(1+6T+pT2) |
| 97 | C22 | 1−18T2+p2T4 |
show more | | |
show less | | |
L(s)=p∏ j=1∏4(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.053741841487707353882126684056, −8.990015121740525383648379496576, −8.373164867544173382186980638339, −7.87156441916130722244009057393, −7.41031075946135687926852450580, −6.61127426785943061529500519900, −6.15692190774184236929415211667, −5.83117384836379108269028934953, −5.18695218824486532825846447060, −4.62582934312640197935671693414, −3.95524337065984516997232290540, −3.07982062010987887626317506271, −2.32406872197087040622380442993, −1.89724448843746106184694344043, 0,
1.89724448843746106184694344043, 2.32406872197087040622380442993, 3.07982062010987887626317506271, 3.95524337065984516997232290540, 4.62582934312640197935671693414, 5.18695218824486532825846447060, 5.83117384836379108269028934953, 6.15692190774184236929415211667, 6.61127426785943061529500519900, 7.41031075946135687926852450580, 7.87156441916130722244009057393, 8.373164867544173382186980638339, 8.990015121740525383648379496576, 9.053741841487707353882126684056