L(s) = 1 | + 5-s + 7-s − 2·11-s + 5·13-s + 8·17-s − 10·19-s − 2·23-s + 10·29-s + 8·31-s + 35-s − 6·37-s + 6·41-s − 4·43-s − 8·47-s + 7·49-s − 12·53-s − 2·55-s − 4·59-s + 5·61-s + 5·65-s + 7·67-s − 12·71-s − 18·73-s − 2·77-s − 3·79-s + 2·83-s + 8·85-s + ⋯ |
L(s) = 1 | + 0.447·5-s + 0.377·7-s − 0.603·11-s + 1.38·13-s + 1.94·17-s − 2.29·19-s − 0.417·23-s + 1.85·29-s + 1.43·31-s + 0.169·35-s − 0.986·37-s + 0.937·41-s − 0.609·43-s − 1.16·47-s + 49-s − 1.64·53-s − 0.269·55-s − 0.520·59-s + 0.640·61-s + 0.620·65-s + 0.855·67-s − 1.42·71-s − 2.10·73-s − 0.227·77-s − 0.337·79-s + 0.219·83-s + 0.867·85-s + ⋯ |
Λ(s)=(=(10497600s/2ΓC(s)2L(s)Λ(2−s)
Λ(s)=(=(10497600s/2ΓC(s+1/2)2L(s)Λ(1−s)
Degree: |
4 |
Conductor: |
10497600
= 26⋅38⋅52
|
Sign: |
1
|
Analytic conductor: |
669.336 |
Root analytic conductor: |
5.08640 |
Motivic weight: |
1 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(4, 10497600, ( :1/2,1/2), 1)
|
Particular Values
L(1) |
≈ |
3.110475953 |
L(21) |
≈ |
3.110475953 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | | 1 |
| 3 | | 1 |
| 5 | C2 | 1−T+T2 |
good | 7 | C2 | (1−5T+pT2)(1+4T+pT2) |
| 11 | C22 | 1+2T−7T2+2pT3+p2T4 |
| 13 | C2 | (1−7T+pT2)(1+2T+pT2) |
| 17 | C2 | (1−4T+pT2)2 |
| 19 | C2 | (1+5T+pT2)2 |
| 23 | C22 | 1+2T−19T2+2pT3+p2T4 |
| 29 | C22 | 1−10T+71T2−10pT3+p2T4 |
| 31 | C22 | 1−8T+33T2−8pT3+p2T4 |
| 37 | C2 | (1+3T+pT2)2 |
| 41 | C22 | 1−6T−5T2−6pT3+p2T4 |
| 43 | C22 | 1+4T−27T2+4pT3+p2T4 |
| 47 | C22 | 1+8T+17T2+8pT3+p2T4 |
| 53 | C2 | (1+6T+pT2)2 |
| 59 | C22 | 1+4T−43T2+4pT3+p2T4 |
| 61 | C22 | 1−5T−36T2−5pT3+p2T4 |
| 67 | C22 | 1−7T−18T2−7pT3+p2T4 |
| 71 | C2 | (1+6T+pT2)2 |
| 73 | C2 | (1+9T+pT2)2 |
| 79 | C22 | 1+3T−70T2+3pT3+p2T4 |
| 83 | C22 | 1−2T−79T2−2pT3+p2T4 |
| 89 | C2 | (1+pT2)2 |
| 97 | C22 | 1+7T−48T2+7pT3+p2T4 |
show more | | |
show less | | |
L(s)=p∏ j=1∏4(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.712607036135152781559145359729, −8.463515552407996208283127995058, −8.104743937011490115203757494307, −7.978997333339432818276948388429, −7.32339905040966103274605126905, −7.00815450400771221949493473984, −6.40870525303038711965989394035, −6.11779289366797645606845046099, −5.97175004030071896383000131913, −5.58488565043829121858857465160, −4.75244905254776834002228683580, −4.75179072627544156992910344013, −4.31601563699528076500694039246, −3.65866775998458643963262225566, −3.22740875260221110389281653390, −2.90634465987910073595815602894, −2.24408207472354851537028761442, −1.74251376984095263425476971971, −1.24847036278373727667627163957, −0.57467501467699531115302204025,
0.57467501467699531115302204025, 1.24847036278373727667627163957, 1.74251376984095263425476971971, 2.24408207472354851537028761442, 2.90634465987910073595815602894, 3.22740875260221110389281653390, 3.65866775998458643963262225566, 4.31601563699528076500694039246, 4.75179072627544156992910344013, 4.75244905254776834002228683580, 5.58488565043829121858857465160, 5.97175004030071896383000131913, 6.11779289366797645606845046099, 6.40870525303038711965989394035, 7.00815450400771221949493473984, 7.32339905040966103274605126905, 7.978997333339432818276948388429, 8.104743937011490115203757494307, 8.463515552407996208283127995058, 8.712607036135152781559145359729