Properties

Label 4-3240e2-1.1-c1e2-0-30
Degree 44
Conductor 1049760010497600
Sign 11
Analytic cond. 669.336669.336
Root an. cond. 5.086405.08640
Motivic weight 11
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank 00

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 5-s + 4·7-s + 4·11-s + 2·13-s − 4·17-s + 8·19-s + 4·23-s − 2·29-s + 8·31-s + 4·35-s + 12·37-s − 6·41-s + 8·43-s + 4·47-s + 7·49-s − 12·53-s + 4·55-s − 4·59-s + 2·61-s + 2·65-s − 8·67-s − 12·73-s + 16·77-s − 16·83-s − 4·85-s + 12·89-s + 8·91-s + ⋯
L(s)  = 1  + 0.447·5-s + 1.51·7-s + 1.20·11-s + 0.554·13-s − 0.970·17-s + 1.83·19-s + 0.834·23-s − 0.371·29-s + 1.43·31-s + 0.676·35-s + 1.97·37-s − 0.937·41-s + 1.21·43-s + 0.583·47-s + 49-s − 1.64·53-s + 0.539·55-s − 0.520·59-s + 0.256·61-s + 0.248·65-s − 0.977·67-s − 1.40·73-s + 1.82·77-s − 1.75·83-s − 0.433·85-s + 1.27·89-s + 0.838·91-s + ⋯

Functional equation

Λ(s)=(10497600s/2ΓC(s)2L(s)=(Λ(2s)\begin{aligned}\Lambda(s)=\mathstrut & 10497600 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}
Λ(s)=(10497600s/2ΓC(s+1/2)2L(s)=(Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 10497600 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}

Invariants

Degree: 44
Conductor: 1049760010497600    =    2638522^{6} \cdot 3^{8} \cdot 5^{2}
Sign: 11
Analytic conductor: 669.336669.336
Root analytic conductor: 5.086405.08640
Motivic weight: 11
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: 00
Selberg data: (4, 10497600, ( :1/2,1/2), 1)(4,\ 10497600,\ (\ :1/2, 1/2),\ 1)

Particular Values

L(1)L(1) \approx 5.4346409465.434640946
L(12)L(\frac12) \approx 5.4346409465.434640946
L(32)L(\frac{3}{2}) not available
L(1)L(1) not available

Euler product

   L(s)=pFp(ps)1L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1}
ppGal(Fp)\Gal(F_p)Fp(T)F_p(T)
bad2 1 1
3 1 1
5C2C_2 1T+T2 1 - T + T^{2}
good7C2C_2 (15T+pT2)(1+T+pT2) ( 1 - 5 T + p T^{2} )( 1 + T + p T^{2} )
11C22C_2^2 14T+5T24pT3+p2T4 1 - 4 T + 5 T^{2} - 4 p T^{3} + p^{2} T^{4}
13C2C_2 (17T+pT2)(1+5T+pT2) ( 1 - 7 T + p T^{2} )( 1 + 5 T + p T^{2} )
17C2C_2 (1+2T+pT2)2 ( 1 + 2 T + p T^{2} )^{2}
19C2C_2 (14T+pT2)2 ( 1 - 4 T + p T^{2} )^{2}
23C22C_2^2 14T7T24pT3+p2T4 1 - 4 T - 7 T^{2} - 4 p T^{3} + p^{2} T^{4}
29C22C_2^2 1+2T25T2+2pT3+p2T4 1 + 2 T - 25 T^{2} + 2 p T^{3} + p^{2} T^{4}
31C22C_2^2 18T+33T28pT3+p2T4 1 - 8 T + 33 T^{2} - 8 p T^{3} + p^{2} T^{4}
37C2C_2 (16T+pT2)2 ( 1 - 6 T + p T^{2} )^{2}
41C22C_2^2 1+6T5T2+6pT3+p2T4 1 + 6 T - 5 T^{2} + 6 p T^{3} + p^{2} T^{4}
43C2C_2 (113T+pT2)(1+5T+pT2) ( 1 - 13 T + p T^{2} )( 1 + 5 T + p T^{2} )
47C22C_2^2 14T31T24pT3+p2T4 1 - 4 T - 31 T^{2} - 4 p T^{3} + p^{2} T^{4}
53C2C_2 (1+6T+pT2)2 ( 1 + 6 T + p T^{2} )^{2}
59C22C_2^2 1+4T43T2+4pT3+p2T4 1 + 4 T - 43 T^{2} + 4 p T^{3} + p^{2} T^{4}
61C22C_2^2 12T57T22pT3+p2T4 1 - 2 T - 57 T^{2} - 2 p T^{3} + p^{2} T^{4}
67C22C_2^2 1+8T3T2+8pT3+p2T4 1 + 8 T - 3 T^{2} + 8 p T^{3} + p^{2} T^{4}
71C2C_2 (1+pT2)2 ( 1 + p T^{2} )^{2}
73C2C_2 (1+6T+pT2)2 ( 1 + 6 T + p T^{2} )^{2}
79C22C_2^2 1pT2+p2T4 1 - p T^{2} + p^{2} T^{4}
83C22C_2^2 1+16T+173T2+16pT3+p2T4 1 + 16 T + 173 T^{2} + 16 p T^{3} + p^{2} T^{4}
89C2C_2 (16T+pT2)2 ( 1 - 6 T + p T^{2} )^{2}
97C2C_2 (119T+pT2)(1+5T+pT2) ( 1 - 19 T + p T^{2} )( 1 + 5 T + p T^{2} )
show more
show less
   L(s)=p j=14(1αj,pps)1L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}

Imaginary part of the first few zeros on the critical line

−8.775738221971129928713017847475, −8.620925990908311200375000500775, −8.055497835935780895990818239749, −7.70580819100260057630002073703, −7.39564614325142566789176250416, −7.10097507023005863153467861656, −6.45354592331089491291581107900, −6.25473549548713818342062133531, −5.79283828259738763106229961254, −5.52935531655825512705437523890, −4.77255057291672011978712871596, −4.66002107074911457044767329640, −4.39401867612762282632330780686, −3.79866559309019276402115184434, −3.14499468958761546637218678166, −2.92894620361717558564372310535, −2.16028693128308461113817397367, −1.71580801263595136428293652893, −1.15445220581255516115920080329, −0.855327904736472794737847602444, 0.855327904736472794737847602444, 1.15445220581255516115920080329, 1.71580801263595136428293652893, 2.16028693128308461113817397367, 2.92894620361717558564372310535, 3.14499468958761546637218678166, 3.79866559309019276402115184434, 4.39401867612762282632330780686, 4.66002107074911457044767329640, 4.77255057291672011978712871596, 5.52935531655825512705437523890, 5.79283828259738763106229961254, 6.25473549548713818342062133531, 6.45354592331089491291581107900, 7.10097507023005863153467861656, 7.39564614325142566789176250416, 7.70580819100260057630002073703, 8.055497835935780895990818239749, 8.620925990908311200375000500775, 8.775738221971129928713017847475

Graph of the ZZ-function along the critical line