L(s) = 1 | + 2-s + 2·3-s + 4-s + 2·6-s + 8-s + 3·9-s − 8·11-s + 2·12-s + 16-s + 2·17-s + 3·18-s + 8·19-s − 8·22-s + 2·24-s − 6·25-s + 4·27-s + 32-s − 16·33-s + 2·34-s + 3·36-s + 8·38-s + 20·41-s + 24·43-s − 8·44-s + 2·48-s − 14·49-s − 6·50-s + ⋯ |
L(s) = 1 | + 0.707·2-s + 1.15·3-s + 1/2·4-s + 0.816·6-s + 0.353·8-s + 9-s − 2.41·11-s + 0.577·12-s + 1/4·16-s + 0.485·17-s + 0.707·18-s + 1.83·19-s − 1.70·22-s + 0.408·24-s − 6/5·25-s + 0.769·27-s + 0.176·32-s − 2.78·33-s + 0.342·34-s + 1/2·36-s + 1.29·38-s + 3.12·41-s + 3.65·43-s − 1.20·44-s + 0.288·48-s − 2·49-s − 0.848·50-s + ⋯ |
Λ(s)=(=(332928s/2ΓC(s)2L(s)Λ(2−s)
Λ(s)=(=(332928s/2ΓC(s+1/2)2L(s)Λ(1−s)
Degree: |
4 |
Conductor: |
332928
= 27⋅32⋅172
|
Sign: |
1
|
Analytic conductor: |
21.2277 |
Root analytic conductor: |
2.14647 |
Motivic weight: |
1 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(4, 332928, ( :1/2,1/2), 1)
|
Particular Values
L(1) |
≈ |
4.157881714 |
L(21) |
≈ |
4.157881714 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | C1 | 1−T |
| 3 | C1 | (1−T)2 |
| 17 | C1 | (1−T)2 |
good | 5 | C2 | (1−2T+pT2)(1+2T+pT2) |
| 7 | C2 | (1+pT2)2 |
| 11 | C2 | (1+4T+pT2)2 |
| 13 | C2 | (1−2T+pT2)(1+2T+pT2) |
| 19 | C2 | (1−4T+pT2)2 |
| 23 | C2 | (1+pT2)2 |
| 29 | C2 | (1−10T+pT2)(1+10T+pT2) |
| 31 | C2 | (1−8T+pT2)(1+8T+pT2) |
| 37 | C2 | (1−2T+pT2)(1+2T+pT2) |
| 41 | C2 | (1−10T+pT2)2 |
| 43 | C2 | (1−12T+pT2)2 |
| 47 | C2 | (1+pT2)2 |
| 53 | C2 | (1−6T+pT2)(1+6T+pT2) |
| 59 | C2 | (1−12T+pT2)2 |
| 61 | C2 | (1−10T+pT2)(1+10T+pT2) |
| 67 | C2 | (1+12T+pT2)2 |
| 71 | C2 | (1+pT2)2 |
| 73 | C2 | (1−10T+pT2)2 |
| 79 | C2 | (1−8T+pT2)(1+8T+pT2) |
| 83 | C2 | (1−4T+pT2)2 |
| 89 | C2 | (1+6T+pT2)2 |
| 97 | C2 | (1+14T+pT2)2 |
show more | | |
show less | | |
L(s)=p∏ j=1∏4(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.658113684153939465660001552715, −7.958882066985845549410362974675, −7.890763986910657579747142309970, −7.36440720073199929079936076774, −7.34292617858622580122915984824, −6.29236664701447308952901966222, −5.62906231402718523510730620943, −5.51457882926074302977186886250, −4.91746541938042376263088347369, −4.13875090005906653574798019221, −3.84610425166553964062381179508, −2.86767294411575254972359726206, −2.76309813409348720224135008444, −2.21434037861733189800471556077, −1.01738437769258744176787321955,
1.01738437769258744176787321955, 2.21434037861733189800471556077, 2.76309813409348720224135008444, 2.86767294411575254972359726206, 3.84610425166553964062381179508, 4.13875090005906653574798019221, 4.91746541938042376263088347369, 5.51457882926074302977186886250, 5.62906231402718523510730620943, 6.29236664701447308952901966222, 7.34292617858622580122915984824, 7.36440720073199929079936076774, 7.890763986910657579747142309970, 7.958882066985845549410362974675, 8.658113684153939465660001552715