Properties

Label 4-332928-1.1-c1e2-0-21
Degree $4$
Conductor $332928$
Sign $-1$
Analytic cond. $21.2277$
Root an. cond. $2.14647$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s − 3·3-s + 4-s − 3·6-s + 8-s + 6·9-s − 3·11-s − 3·12-s + 16-s + 6·18-s − 5·19-s − 3·22-s − 3·24-s + 3·25-s − 9·27-s + 32-s + 9·33-s + 6·36-s − 5·38-s − 3·41-s + 10·43-s − 3·44-s − 3·48-s − 8·49-s + 3·50-s − 9·54-s + 15·57-s + ⋯
L(s)  = 1  + 0.707·2-s − 1.73·3-s + 1/2·4-s − 1.22·6-s + 0.353·8-s + 2·9-s − 0.904·11-s − 0.866·12-s + 1/4·16-s + 1.41·18-s − 1.14·19-s − 0.639·22-s − 0.612·24-s + 3/5·25-s − 1.73·27-s + 0.176·32-s + 1.56·33-s + 36-s − 0.811·38-s − 0.468·41-s + 1.52·43-s − 0.452·44-s − 0.433·48-s − 8/7·49-s + 0.424·50-s − 1.22·54-s + 1.98·57-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 332928 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 332928 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(332928\)    =    \(2^{7} \cdot 3^{2} \cdot 17^{2}\)
Sign: $-1$
Analytic conductor: \(21.2277\)
Root analytic conductor: \(2.14647\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((4,\ 332928,\ (\ :1/2, 1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2$C_1$ \( 1 - T \)
3$C_2$ \( 1 + p T + p T^{2} \)
17$C_1$$\times$$C_1$ \( ( 1 - T )( 1 + T ) \)
good5$C_2^2$ \( 1 - 3 T^{2} + p^{2} T^{4} \)
7$C_2^2$ \( 1 + 8 T^{2} + p^{2} T^{4} \)
11$C_2$$\times$$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 5 T + p T^{2} ) \)
13$C_2^2$ \( 1 + 14 T^{2} + p^{2} T^{4} \)
19$C_2$$\times$$C_2$ \( ( 1 + T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
23$C_2^2$ \( 1 - 26 T^{2} + p^{2} T^{4} \)
29$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + 8 T + p T^{2} ) \)
31$C_2^2$ \( 1 + 32 T^{2} + p^{2} T^{4} \)
37$C_2^2$ \( 1 + 2 T^{2} + p^{2} T^{4} \)
41$C_2$$\times$$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 5 T + p T^{2} ) \)
43$C_2$$\times$$C_2$ \( ( 1 - 11 T + p T^{2} )( 1 + T + p T^{2} ) \)
47$C_2^2$ \( 1 + 51 T^{2} + p^{2} T^{4} \)
53$C_2^2$ \( 1 - 11 T^{2} + p^{2} T^{4} \)
59$C_2$$\times$$C_2$ \( ( 1 - 3 T + p T^{2} )( 1 + p T^{2} ) \)
61$C_2^2$ \( 1 + 50 T^{2} + p^{2} T^{4} \)
67$C_2$$\times$$C_2$ \( ( 1 + 2 T + p T^{2} )( 1 + 8 T + p T^{2} ) \)
71$C_2^2$ \( 1 + 75 T^{2} + p^{2} T^{4} \)
73$C_2$$\times$$C_2$ \( ( 1 - 7 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
79$C_2^2$ \( 1 - 104 T^{2} + p^{2} T^{4} \)
83$C_2$$\times$$C_2$ \( ( 1 - 9 T + p T^{2} )( 1 + 12 T + p T^{2} ) \)
89$C_2$$\times$$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 9 T + p T^{2} ) \)
97$C_2$$\times$$C_2$ \( ( 1 - 7 T + p T^{2} )( 1 - T + p T^{2} ) \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.604969221559244333634630913098, −7.69823812494879928556312846174, −7.59776998434374205435069602344, −6.89865749107197294369399543033, −6.45782929427348210743724639109, −6.13709332444057347666756704097, −5.65045951154400845042854387589, −5.10870910841514021482586673894, −4.81103346199117845966800164034, −4.28088665839059093669700037659, −3.71375658431355539997467716583, −2.84206545343609058705195086989, −2.15686340953137112061921451226, −1.19915912930715292553423329301, 0, 1.19915912930715292553423329301, 2.15686340953137112061921451226, 2.84206545343609058705195086989, 3.71375658431355539997467716583, 4.28088665839059093669700037659, 4.81103346199117845966800164034, 5.10870910841514021482586673894, 5.65045951154400845042854387589, 6.13709332444057347666756704097, 6.45782929427348210743724639109, 6.89865749107197294369399543033, 7.59776998434374205435069602344, 7.69823812494879928556312846174, 8.604969221559244333634630913098

Graph of the $Z$-function along the critical line