L(s) = 1 | + 2-s − 3·3-s + 4-s − 3·6-s + 8-s + 6·9-s − 3·11-s − 3·12-s + 16-s + 6·18-s − 5·19-s − 3·22-s − 3·24-s + 3·25-s − 9·27-s + 32-s + 9·33-s + 6·36-s − 5·38-s − 3·41-s + 10·43-s − 3·44-s − 3·48-s − 8·49-s + 3·50-s − 9·54-s + 15·57-s + ⋯ |
L(s) = 1 | + 0.707·2-s − 1.73·3-s + 1/2·4-s − 1.22·6-s + 0.353·8-s + 2·9-s − 0.904·11-s − 0.866·12-s + 1/4·16-s + 1.41·18-s − 1.14·19-s − 0.639·22-s − 0.612·24-s + 3/5·25-s − 1.73·27-s + 0.176·32-s + 1.56·33-s + 36-s − 0.811·38-s − 0.468·41-s + 1.52·43-s − 0.452·44-s − 0.433·48-s − 8/7·49-s + 0.424·50-s − 1.22·54-s + 1.98·57-s + ⋯ |
Λ(s)=(=(332928s/2ΓC(s)2L(s)−Λ(2−s)
Λ(s)=(=(332928s/2ΓC(s+1/2)2L(s)−Λ(1−s)
Degree: |
4 |
Conductor: |
332928
= 27⋅32⋅172
|
Sign: |
−1
|
Analytic conductor: |
21.2277 |
Root analytic conductor: |
2.14647 |
Motivic weight: |
1 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
yes
|
Self-dual: |
yes
|
Analytic rank: |
1
|
Selberg data: |
(4, 332928, ( :1/2,1/2), −1)
|
Particular Values
L(1) |
= |
0 |
L(21) |
= |
0 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | C1 | 1−T |
| 3 | C2 | 1+pT+pT2 |
| 17 | C1×C1 | (1−T)(1+T) |
good | 5 | C22 | 1−3T2+p2T4 |
| 7 | C22 | 1+8T2+p2T4 |
| 11 | C2×C2 | (1−2T+pT2)(1+5T+pT2) |
| 13 | C22 | 1+14T2+p2T4 |
| 19 | C2×C2 | (1+T+pT2)(1+4T+pT2) |
| 23 | C22 | 1−26T2+p2T4 |
| 29 | C2 | (1−8T+pT2)(1+8T+pT2) |
| 31 | C22 | 1+32T2+p2T4 |
| 37 | C22 | 1+2T2+p2T4 |
| 41 | C2×C2 | (1−2T+pT2)(1+5T+pT2) |
| 43 | C2×C2 | (1−11T+pT2)(1+T+pT2) |
| 47 | C22 | 1+51T2+p2T4 |
| 53 | C22 | 1−11T2+p2T4 |
| 59 | C2×C2 | (1−3T+pT2)(1+pT2) |
| 61 | C22 | 1+50T2+p2T4 |
| 67 | C2×C2 | (1+2T+pT2)(1+8T+pT2) |
| 71 | C22 | 1+75T2+p2T4 |
| 73 | C2×C2 | (1−7T+pT2)(1+2T+pT2) |
| 79 | C22 | 1−104T2+p2T4 |
| 83 | C2×C2 | (1−9T+pT2)(1+12T+pT2) |
| 89 | C2×C2 | (1−6T+pT2)(1+9T+pT2) |
| 97 | C2×C2 | (1−7T+pT2)(1−T+pT2) |
show more | | |
show less | | |
L(s)=p∏ j=1∏4(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.604969221559244333634630913098, −7.69823812494879928556312846174, −7.59776998434374205435069602344, −6.89865749107197294369399543033, −6.45782929427348210743724639109, −6.13709332444057347666756704097, −5.65045951154400845042854387589, −5.10870910841514021482586673894, −4.81103346199117845966800164034, −4.28088665839059093669700037659, −3.71375658431355539997467716583, −2.84206545343609058705195086989, −2.15686340953137112061921451226, −1.19915912930715292553423329301, 0,
1.19915912930715292553423329301, 2.15686340953137112061921451226, 2.84206545343609058705195086989, 3.71375658431355539997467716583, 4.28088665839059093669700037659, 4.81103346199117845966800164034, 5.10870910841514021482586673894, 5.65045951154400845042854387589, 6.13709332444057347666756704097, 6.45782929427348210743724639109, 6.89865749107197294369399543033, 7.59776998434374205435069602344, 7.69823812494879928556312846174, 8.604969221559244333634630913098