L(s) = 1 | + 2-s − 2·3-s + 4-s − 2·6-s + 8-s + 3·9-s − 2·12-s + 16-s + 2·17-s + 3·18-s − 2·24-s − 6·25-s − 4·27-s + 32-s + 2·34-s + 3·36-s − 12·41-s + 8·43-s − 2·48-s + 10·49-s − 6·50-s − 4·51-s − 4·54-s + 16·59-s + 64-s + 2·68-s + 3·72-s + ⋯ |
L(s) = 1 | + 0.707·2-s − 1.15·3-s + 1/2·4-s − 0.816·6-s + 0.353·8-s + 9-s − 0.577·12-s + 1/4·16-s + 0.485·17-s + 0.707·18-s − 0.408·24-s − 6/5·25-s − 0.769·27-s + 0.176·32-s + 0.342·34-s + 1/2·36-s − 1.87·41-s + 1.21·43-s − 0.288·48-s + 10/7·49-s − 0.848·50-s − 0.560·51-s − 0.544·54-s + 2.08·59-s + 1/8·64-s + 0.242·68-s + 0.353·72-s + ⋯ |
Λ(s)=(=(332928s/2ΓC(s)2L(s)Λ(2−s)
Λ(s)=(=(332928s/2ΓC(s+1/2)2L(s)Λ(1−s)
Degree: |
4 |
Conductor: |
332928
= 27⋅32⋅172
|
Sign: |
1
|
Analytic conductor: |
21.2277 |
Root analytic conductor: |
2.14647 |
Motivic weight: |
1 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
yes
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(4, 332928, ( :1/2,1/2), 1)
|
Particular Values
L(1) |
≈ |
1.800787128 |
L(21) |
≈ |
1.800787128 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | C1 | 1−T |
| 3 | C1 | (1+T)2 |
| 17 | C1 | (1−T)2 |
good | 5 | C2 | (1−2T+pT2)(1+2T+pT2) |
| 7 | C22 | 1−10T2+p2T4 |
| 11 | C2 | (1−4T+pT2)(1+4T+pT2) |
| 13 | C22 | 1+6T2+p2T4 |
| 19 | C2 | (1−4T+pT2)(1+4T+pT2) |
| 23 | C22 | 1−26T2+p2T4 |
| 29 | C22 | 1−10T2+p2T4 |
| 31 | C22 | 1−26T2+p2T4 |
| 37 | C22 | 1−10T2+p2T4 |
| 41 | C2 | (1+6T+pT2)2 |
| 43 | C2×C2 | (1−12T+pT2)(1+4T+pT2) |
| 47 | C22 | 1+62T2+p2T4 |
| 53 | C22 | 1−74T2+p2T4 |
| 59 | C2×C2 | (1−12T+pT2)(1−4T+pT2) |
| 61 | C22 | 1−58T2+p2T4 |
| 67 | C2 | (1−4T+pT2)(1+4T+pT2) |
| 71 | C22 | 1+6T2+p2T4 |
| 73 | C2×C2 | (1−10T+pT2)(1+6T+pT2) |
| 79 | C22 | 1+6T2+p2T4 |
| 83 | C2×C2 | (1−12T+pT2)(1−4T+pT2) |
| 89 | C2×C2 | (1−10T+pT2)(1+6T+pT2) |
| 97 | C2×C2 | (1−10T+pT2)(1+14T+pT2) |
show more | | |
show less | | |
L(s)=p∏ j=1∏4(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.661140335457030953268886751361, −8.234369008581860367630742160110, −7.65049983315333815787742157938, −7.23007339071516806375060687388, −6.78961807332716027516059567573, −6.31545545210484520681532449235, −5.77190626255755447945500332687, −5.46817165791435838365201502987, −5.02683125206524074860344164800, −4.39174104486575572646924771442, −3.87028361929848019243608003645, −3.41714102710223844709096907143, −2.45289756185632805884410446281, −1.79327144070165485772745385168, −0.74719969981905527974315558451,
0.74719969981905527974315558451, 1.79327144070165485772745385168, 2.45289756185632805884410446281, 3.41714102710223844709096907143, 3.87028361929848019243608003645, 4.39174104486575572646924771442, 5.02683125206524074860344164800, 5.46817165791435838365201502987, 5.77190626255755447945500332687, 6.31545545210484520681532449235, 6.78961807332716027516059567573, 7.23007339071516806375060687388, 7.65049983315333815787742157938, 8.234369008581860367630742160110, 8.661140335457030953268886751361