Properties

Label 4-332928-1.1-c1e2-0-3
Degree $4$
Conductor $332928$
Sign $1$
Analytic cond. $21.2277$
Root an. cond. $2.14647$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s − 2·3-s + 4-s − 2·6-s + 8-s + 3·9-s − 2·12-s + 16-s + 2·17-s + 3·18-s − 2·24-s − 6·25-s − 4·27-s + 32-s + 2·34-s + 3·36-s − 12·41-s + 8·43-s − 2·48-s + 10·49-s − 6·50-s − 4·51-s − 4·54-s + 16·59-s + 64-s + 2·68-s + 3·72-s + ⋯
L(s)  = 1  + 0.707·2-s − 1.15·3-s + 1/2·4-s − 0.816·6-s + 0.353·8-s + 9-s − 0.577·12-s + 1/4·16-s + 0.485·17-s + 0.707·18-s − 0.408·24-s − 6/5·25-s − 0.769·27-s + 0.176·32-s + 0.342·34-s + 1/2·36-s − 1.87·41-s + 1.21·43-s − 0.288·48-s + 10/7·49-s − 0.848·50-s − 0.560·51-s − 0.544·54-s + 2.08·59-s + 1/8·64-s + 0.242·68-s + 0.353·72-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 332928 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 332928 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(332928\)    =    \(2^{7} \cdot 3^{2} \cdot 17^{2}\)
Sign: $1$
Analytic conductor: \(21.2277\)
Root analytic conductor: \(2.14647\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 332928,\ (\ :1/2, 1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.800787128\)
\(L(\frac12)\) \(\approx\) \(1.800787128\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2$C_1$ \( 1 - T \)
3$C_1$ \( ( 1 + T )^{2} \)
17$C_1$ \( ( 1 - T )^{2} \)
good5$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
7$C_2^2$ \( 1 - 10 T^{2} + p^{2} T^{4} \)
11$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
13$C_2^2$ \( 1 + 6 T^{2} + p^{2} T^{4} \)
19$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
23$C_2^2$ \( 1 - 26 T^{2} + p^{2} T^{4} \)
29$C_2^2$ \( 1 - 10 T^{2} + p^{2} T^{4} \)
31$C_2^2$ \( 1 - 26 T^{2} + p^{2} T^{4} \)
37$C_2^2$ \( 1 - 10 T^{2} + p^{2} T^{4} \)
41$C_2$ \( ( 1 + 6 T + p T^{2} )^{2} \)
43$C_2$$\times$$C_2$ \( ( 1 - 12 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
47$C_2^2$ \( 1 + 62 T^{2} + p^{2} T^{4} \)
53$C_2^2$ \( 1 - 74 T^{2} + p^{2} T^{4} \)
59$C_2$$\times$$C_2$ \( ( 1 - 12 T + p T^{2} )( 1 - 4 T + p T^{2} ) \)
61$C_2^2$ \( 1 - 58 T^{2} + p^{2} T^{4} \)
67$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
71$C_2^2$ \( 1 + 6 T^{2} + p^{2} T^{4} \)
73$C_2$$\times$$C_2$ \( ( 1 - 10 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
79$C_2^2$ \( 1 + 6 T^{2} + p^{2} T^{4} \)
83$C_2$$\times$$C_2$ \( ( 1 - 12 T + p T^{2} )( 1 - 4 T + p T^{2} ) \)
89$C_2$$\times$$C_2$ \( ( 1 - 10 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
97$C_2$$\times$$C_2$ \( ( 1 - 10 T + p T^{2} )( 1 + 14 T + p T^{2} ) \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.661140335457030953268886751361, −8.234369008581860367630742160110, −7.65049983315333815787742157938, −7.23007339071516806375060687388, −6.78961807332716027516059567573, −6.31545545210484520681532449235, −5.77190626255755447945500332687, −5.46817165791435838365201502987, −5.02683125206524074860344164800, −4.39174104486575572646924771442, −3.87028361929848019243608003645, −3.41714102710223844709096907143, −2.45289756185632805884410446281, −1.79327144070165485772745385168, −0.74719969981905527974315558451, 0.74719969981905527974315558451, 1.79327144070165485772745385168, 2.45289756185632805884410446281, 3.41714102710223844709096907143, 3.87028361929848019243608003645, 4.39174104486575572646924771442, 5.02683125206524074860344164800, 5.46817165791435838365201502987, 5.77190626255755447945500332687, 6.31545545210484520681532449235, 6.78961807332716027516059567573, 7.23007339071516806375060687388, 7.65049983315333815787742157938, 8.234369008581860367630742160110, 8.661140335457030953268886751361

Graph of the $Z$-function along the critical line