L(s) = 1 | + 4·9-s + 8·13-s − 6·17-s + 8·19-s + 2·25-s + 16·43-s + 24·47-s − 12·53-s − 8·67-s + 7·81-s − 24·89-s − 24·101-s − 16·103-s + 32·117-s + 20·121-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s − 24·153-s + 157-s + 163-s + 167-s + 22·169-s + 32·171-s + ⋯ |
L(s) = 1 | + 4/3·9-s + 2.21·13-s − 1.45·17-s + 1.83·19-s + 2/5·25-s + 2.43·43-s + 3.50·47-s − 1.64·53-s − 0.977·67-s + 7/9·81-s − 2.54·89-s − 2.38·101-s − 1.57·103-s + 2.95·117-s + 1.81·121-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + 0.0819·149-s + 0.0813·151-s − 1.94·153-s + 0.0798·157-s + 0.0783·163-s + 0.0773·167-s + 1.69·169-s + 2.44·171-s + ⋯ |
Λ(s)=(=(11102224s/2ΓC(s)2L(s)Λ(2−s)
Λ(s)=(=(11102224s/2ΓC(s+1/2)2L(s)Λ(1−s)
Degree: |
4 |
Conductor: |
11102224
= 24⋅74⋅172
|
Sign: |
1
|
Analytic conductor: |
707.887 |
Root analytic conductor: |
5.15811 |
Motivic weight: |
1 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(4, 11102224, ( :1/2,1/2), 1)
|
Particular Values
L(1) |
≈ |
4.073961275 |
L(21) |
≈ |
4.073961275 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | | 1 |
| 7 | | 1 |
| 17 | C2 | 1+6T+pT2 |
good | 3 | C22 | 1−4T2+p2T4 |
| 5 | C22 | 1−2T2+p2T4 |
| 11 | C22 | 1−20T2+p2T4 |
| 13 | C2 | (1−4T+pT2)2 |
| 19 | C2 | (1−4T+pT2)2 |
| 23 | C22 | 1−44T2+p2T4 |
| 29 | C22 | 1−50T2+p2T4 |
| 31 | C22 | 1−44T2+p2T4 |
| 37 | C22 | 1−2T2+p2T4 |
| 41 | C2 | (1−6T+pT2)(1+6T+pT2) |
| 43 | C2 | (1−8T+pT2)2 |
| 47 | C2 | (1−12T+pT2)2 |
| 53 | C2 | (1+6T+pT2)2 |
| 59 | C2 | (1+pT2)2 |
| 61 | C22 | 1−50T2+p2T4 |
| 67 | C2 | (1+4T+pT2)2 |
| 71 | C22 | 1−92T2+p2T4 |
| 73 | C2 | (1−pT2)2 |
| 79 | C22 | 1−140T2+p2T4 |
| 83 | C2 | (1+pT2)2 |
| 89 | C2 | (1+12T+pT2)2 |
| 97 | C2 | (1−pT2)2 |
show more | | |
show less | | |
L(s)=p∏ j=1∏4(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.171924702527574337555717665426, −8.478853418615852924070730515768, −8.117150631464355883057345796486, −7.58244010693781146472357456071, −7.30460009731033303507926265645, −6.98330175918415174496554911145, −6.71585799606762800398881691780, −5.99073947578360479849892432441, −5.92416336827612259671591408493, −5.55971352873620900131879208340, −4.94533604186819072799102090721, −4.33556329033103752053931528617, −4.23651806592263843561796399330, −3.84723019786387171980301979499, −3.35557915310758406773997657842, −2.73350639811331207734201520511, −2.40401879973578705823224118485, −1.39188626362306616951778318912, −1.37450596698300350519268658808, −0.69197666760147965336248626507,
0.69197666760147965336248626507, 1.37450596698300350519268658808, 1.39188626362306616951778318912, 2.40401879973578705823224118485, 2.73350639811331207734201520511, 3.35557915310758406773997657842, 3.84723019786387171980301979499, 4.23651806592263843561796399330, 4.33556329033103752053931528617, 4.94533604186819072799102090721, 5.55971352873620900131879208340, 5.92416336827612259671591408493, 5.99073947578360479849892432441, 6.71585799606762800398881691780, 6.98330175918415174496554911145, 7.30460009731033303507926265645, 7.58244010693781146472357456071, 8.117150631464355883057345796486, 8.478853418615852924070730515768, 9.171924702527574337555717665426