Properties

Label 4-3344e2-1.1-c0e2-0-0
Degree $4$
Conductor $11182336$
Sign $1$
Analytic cond. $2.78513$
Root an. cond. $1.29184$
Motivic weight $0$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2·5-s − 2·7-s − 2·9-s − 11-s − 2·19-s + 25-s − 4·35-s − 2·43-s − 4·45-s + 49-s − 2·55-s + 4·63-s + 2·77-s + 3·81-s + 4·83-s − 4·95-s + 2·99-s − 2·125-s + 127-s + 131-s + 4·133-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + ⋯
L(s)  = 1  + 2·5-s − 2·7-s − 2·9-s − 11-s − 2·19-s + 25-s − 4·35-s − 2·43-s − 4·45-s + 49-s − 2·55-s + 4·63-s + 2·77-s + 3·81-s + 4·83-s − 4·95-s + 2·99-s − 2·125-s + 127-s + 131-s + 4·133-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 11182336 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 11182336 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(11182336\)    =    \(2^{8} \cdot 11^{2} \cdot 19^{2}\)
Sign: $1$
Analytic conductor: \(2.78513\)
Root analytic conductor: \(1.29184\)
Motivic weight: \(0\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 11182336,\ (\ :0, 0),\ 1)\)

Particular Values

\(L(\frac{1}{2})\) \(\approx\) \(0.4955163753\)
\(L(\frac12)\) \(\approx\) \(0.4955163753\)
\(L(1)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
11$C_2$ \( 1 + T + T^{2} \)
19$C_1$ \( ( 1 + T )^{2} \)
good3$C_2$ \( ( 1 + T^{2} )^{2} \)
5$C_2$ \( ( 1 - T + T^{2} )^{2} \)
7$C_2$ \( ( 1 + T + T^{2} )^{2} \)
13$C_2$ \( ( 1 + T^{2} )^{2} \)
17$C_2$ \( ( 1 - T + T^{2} )( 1 + T + T^{2} ) \)
23$C_1$$\times$$C_1$ \( ( 1 - T )^{2}( 1 + T )^{2} \)
29$C_2$ \( ( 1 + T^{2} )^{2} \)
31$C_2$ \( ( 1 + T^{2} )^{2} \)
37$C_1$$\times$$C_1$ \( ( 1 - T )^{2}( 1 + T )^{2} \)
41$C_2$ \( ( 1 + T^{2} )^{2} \)
43$C_2$ \( ( 1 + T + T^{2} )^{2} \)
47$C_2$ \( ( 1 - T + T^{2} )( 1 + T + T^{2} ) \)
53$C_1$$\times$$C_1$ \( ( 1 - T )^{2}( 1 + T )^{2} \)
59$C_2$ \( ( 1 + T^{2} )^{2} \)
61$C_2$ \( ( 1 - T + T^{2} )( 1 + T + T^{2} ) \)
67$C_2$ \( ( 1 + T^{2} )^{2} \)
71$C_2$ \( ( 1 + T^{2} )^{2} \)
73$C_2$ \( ( 1 - T + T^{2} )( 1 + T + T^{2} ) \)
79$C_1$$\times$$C_1$ \( ( 1 - T )^{2}( 1 + T )^{2} \)
83$C_1$ \( ( 1 - T )^{4} \)
89$C_1$$\times$$C_1$ \( ( 1 - T )^{2}( 1 + T )^{2} \)
97$C_1$$\times$$C_1$ \( ( 1 - T )^{2}( 1 + T )^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.116124634607260209711976603861, −8.673920470438124244113198324602, −8.391024482195788646960181817374, −7.936182055181733746265555181945, −7.62851729711186109030202678200, −6.78971483632858839388669619393, −6.42290523941451150081624021416, −6.33940024170226370871815005867, −6.22699194579585236291741971785, −5.52868302880481185877540965669, −5.45524093200267442324615891568, −5.03377124109541591979337953843, −4.45711715415669880473255214204, −3.60501805484142871921563506478, −3.45401214877957642521004217867, −2.87163757491949561897780663283, −2.52618364648759361627890946559, −2.16602627131889975193118298740, −1.75515824237564680179202437865, −0.37325347208455571229472566048, 0.37325347208455571229472566048, 1.75515824237564680179202437865, 2.16602627131889975193118298740, 2.52618364648759361627890946559, 2.87163757491949561897780663283, 3.45401214877957642521004217867, 3.60501805484142871921563506478, 4.45711715415669880473255214204, 5.03377124109541591979337953843, 5.45524093200267442324615891568, 5.52868302880481185877540965669, 6.22699194579585236291741971785, 6.33940024170226370871815005867, 6.42290523941451150081624021416, 6.78971483632858839388669619393, 7.62851729711186109030202678200, 7.936182055181733746265555181945, 8.391024482195788646960181817374, 8.673920470438124244113198324602, 9.116124634607260209711976603861

Graph of the $Z$-function along the critical line