L(s) = 1 | + 2·5-s − 2·7-s − 2·9-s − 11-s − 2·19-s + 25-s − 4·35-s − 2·43-s − 4·45-s + 49-s − 2·55-s + 4·63-s + 2·77-s + 3·81-s + 4·83-s − 4·95-s + 2·99-s − 2·125-s + 127-s + 131-s + 4·133-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + ⋯ |
L(s) = 1 | + 2·5-s − 2·7-s − 2·9-s − 11-s − 2·19-s + 25-s − 4·35-s − 2·43-s − 4·45-s + 49-s − 2·55-s + 4·63-s + 2·77-s + 3·81-s + 4·83-s − 4·95-s + 2·99-s − 2·125-s + 127-s + 131-s + 4·133-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + ⋯ |
Λ(s)=(=(11182336s/2ΓC(s)2L(s)Λ(1−s)
Λ(s)=(=(11182336s/2ΓC(s)2L(s)Λ(1−s)
Degree: |
4 |
Conductor: |
11182336
= 28⋅112⋅192
|
Sign: |
1
|
Analytic conductor: |
2.78513 |
Root analytic conductor: |
1.29184 |
Motivic weight: |
0 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(4, 11182336, ( :0,0), 1)
|
Particular Values
L(21) |
≈ |
0.4955163753 |
L(21) |
≈ |
0.4955163753 |
L(1) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | | 1 |
| 11 | C2 | 1+T+T2 |
| 19 | C1 | (1+T)2 |
good | 3 | C2 | (1+T2)2 |
| 5 | C2 | (1−T+T2)2 |
| 7 | C2 | (1+T+T2)2 |
| 13 | C2 | (1+T2)2 |
| 17 | C2 | (1−T+T2)(1+T+T2) |
| 23 | C1×C1 | (1−T)2(1+T)2 |
| 29 | C2 | (1+T2)2 |
| 31 | C2 | (1+T2)2 |
| 37 | C1×C1 | (1−T)2(1+T)2 |
| 41 | C2 | (1+T2)2 |
| 43 | C2 | (1+T+T2)2 |
| 47 | C2 | (1−T+T2)(1+T+T2) |
| 53 | C1×C1 | (1−T)2(1+T)2 |
| 59 | C2 | (1+T2)2 |
| 61 | C2 | (1−T+T2)(1+T+T2) |
| 67 | C2 | (1+T2)2 |
| 71 | C2 | (1+T2)2 |
| 73 | C2 | (1−T+T2)(1+T+T2) |
| 79 | C1×C1 | (1−T)2(1+T)2 |
| 83 | C1 | (1−T)4 |
| 89 | C1×C1 | (1−T)2(1+T)2 |
| 97 | C1×C1 | (1−T)2(1+T)2 |
show more | | |
show less | | |
L(s)=p∏ j=1∏4(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.116124634607260209711976603861, −8.673920470438124244113198324602, −8.391024482195788646960181817374, −7.936182055181733746265555181945, −7.62851729711186109030202678200, −6.78971483632858839388669619393, −6.42290523941451150081624021416, −6.33940024170226370871815005867, −6.22699194579585236291741971785, −5.52868302880481185877540965669, −5.45524093200267442324615891568, −5.03377124109541591979337953843, −4.45711715415669880473255214204, −3.60501805484142871921563506478, −3.45401214877957642521004217867, −2.87163757491949561897780663283, −2.52618364648759361627890946559, −2.16602627131889975193118298740, −1.75515824237564680179202437865, −0.37325347208455571229472566048,
0.37325347208455571229472566048, 1.75515824237564680179202437865, 2.16602627131889975193118298740, 2.52618364648759361627890946559, 2.87163757491949561897780663283, 3.45401214877957642521004217867, 3.60501805484142871921563506478, 4.45711715415669880473255214204, 5.03377124109541591979337953843, 5.45524093200267442324615891568, 5.52868302880481185877540965669, 6.22699194579585236291741971785, 6.33940024170226370871815005867, 6.42290523941451150081624021416, 6.78971483632858839388669619393, 7.62851729711186109030202678200, 7.936182055181733746265555181945, 8.391024482195788646960181817374, 8.673920470438124244113198324602, 9.116124634607260209711976603861