Properties

Label 4-336e2-1.1-c5e2-0-9
Degree 44
Conductor 112896112896
Sign 11
Analytic cond. 2904.022904.02
Root an. cond. 7.340917.34091
Motivic weight 55
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank 00

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 18·3-s − 6·5-s + 98·7-s + 243·9-s + 90·11-s + 768·13-s − 108·15-s + 1.92e3·17-s − 2.24e3·19-s + 1.76e3·21-s − 6.35e3·23-s − 654·25-s + 2.91e3·27-s + 1.05e4·29-s + 3.31e3·31-s + 1.62e3·33-s − 588·35-s + 2.10e3·37-s + 1.38e4·39-s + 1.26e3·41-s + 5.76e3·43-s − 1.45e3·45-s − 1.56e4·47-s + 7.20e3·49-s + 3.46e4·51-s + 1.65e4·53-s − 540·55-s + ⋯
L(s)  = 1  + 1.15·3-s − 0.107·5-s + 0.755·7-s + 9-s + 0.224·11-s + 1.26·13-s − 0.123·15-s + 1.61·17-s − 1.42·19-s + 0.872·21-s − 2.50·23-s − 0.209·25-s + 0.769·27-s + 2.33·29-s + 0.618·31-s + 0.258·33-s − 0.0811·35-s + 0.252·37-s + 1.45·39-s + 0.117·41-s + 0.475·43-s − 0.107·45-s − 1.03·47-s + 3/7·49-s + 1.86·51-s + 0.807·53-s − 0.0240·55-s + ⋯

Functional equation

Λ(s)=(112896s/2ΓC(s)2L(s)=(Λ(6s)\begin{aligned}\Lambda(s)=\mathstrut & 112896 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(6-s) \end{aligned}
Λ(s)=(112896s/2ΓC(s+5/2)2L(s)=(Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 112896 ^{s/2} \, \Gamma_{\C}(s+5/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}

Invariants

Degree: 44
Conductor: 112896112896    =    2832722^{8} \cdot 3^{2} \cdot 7^{2}
Sign: 11
Analytic conductor: 2904.022904.02
Root analytic conductor: 7.340917.34091
Motivic weight: 55
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: 00
Selberg data: (4, 112896, ( :5/2,5/2), 1)(4,\ 112896,\ (\ :5/2, 5/2),\ 1)

Particular Values

L(3)L(3) \approx 6.9916693876.991669387
L(12)L(\frac12) \approx 6.9916693876.991669387
L(72)L(\frac{7}{2}) not available
L(1)L(1) not available

Euler product

   L(s)=pFp(ps)1L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1}
ppGal(Fp)\Gal(F_p)Fp(T)F_p(T)
bad2 1 1
3C1C_1 (1p2T)2 ( 1 - p^{2} T )^{2}
7C1C_1 (1p2T)2 ( 1 - p^{2} T )^{2}
good5D4D_{4} 1+6T+138pT2+6p5T3+p10T4 1 + 6 T + 138 p T^{2} + 6 p^{5} T^{3} + p^{10} T^{4}
11D4D_{4} 190T+51246T290p5T3+p10T4 1 - 90 T + 51246 T^{2} - 90 p^{5} T^{3} + p^{10} T^{4}
13D4D_{4} 1768T+689558T2768p5T3+p10T4 1 - 768 T + 689558 T^{2} - 768 p^{5} T^{3} + p^{10} T^{4}
17D4D_{4} 11926T+3761514T21926p5T3+p10T4 1 - 1926 T + 3761514 T^{2} - 1926 p^{5} T^{3} + p^{10} T^{4}
19D4D_{4} 1+2248T+3007830T2+2248p5T3+p10T4 1 + 2248 T + 3007830 T^{2} + 2248 p^{5} T^{3} + p^{10} T^{4}
23D4D_{4} 1+6354T+22960446T2+6354p5T3+p10T4 1 + 6354 T + 22960446 T^{2} + 6354 p^{5} T^{3} + p^{10} T^{4}
29D4D_{4} 110572T+60053694T210572p5T3+p10T4 1 - 10572 T + 60053694 T^{2} - 10572 p^{5} T^{3} + p^{10} T^{4}
31D4D_{4} 13312T+31130942T23312p5T3+p10T4 1 - 3312 T + 31130942 T^{2} - 3312 p^{5} T^{3} + p^{10} T^{4}
37D4D_{4} 12104T+14492118T22104p5T3+p10T4 1 - 2104 T + 14492118 T^{2} - 2104 p^{5} T^{3} + p^{10} T^{4}
41D4D_{4} 11266T+226048450T21266p5T3+p10T4 1 - 1266 T + 226048450 T^{2} - 1266 p^{5} T^{3} + p^{10} T^{4}
43D4D_{4} 15768T18440058T25768p5T3+p10T4 1 - 5768 T - 18440058 T^{2} - 5768 p^{5} T^{3} + p^{10} T^{4}
47D4D_{4} 1+15612T+373470814T2+15612p5T3+p10T4 1 + 15612 T + 373470814 T^{2} + 15612 p^{5} T^{3} + p^{10} T^{4}
53D4D_{4} 116512T+599616358T216512p5T3+p10T4 1 - 16512 T + 599616358 T^{2} - 16512 p^{5} T^{3} + p^{10} T^{4}
59D4D_{4} 113140T+1459090998T213140p5T3+p10T4 1 - 13140 T + 1459090998 T^{2} - 13140 p^{5} T^{3} + p^{10} T^{4}
61D4D_{4} 1+5796T+1309453982T2+5796p5T3+p10T4 1 + 5796 T + 1309453982 T^{2} + 5796 p^{5} T^{3} + p^{10} T^{4}
67D4D_{4} 156116T+2298831942T256116p5T3+p10T4 1 - 56116 T + 2298831942 T^{2} - 56116 p^{5} T^{3} + p^{10} T^{4}
71D4D_{4} 1+11022T822078402T2+11022p5T3+p10T4 1 + 11022 T - 822078402 T^{2} + 11022 p^{5} T^{3} + p^{10} T^{4}
73D4D_{4} 1+85384T+5800143006T2+85384p5T3+p10T4 1 + 85384 T + 5800143006 T^{2} + 85384 p^{5} T^{3} + p^{10} T^{4}
79D4D_{4} 119620T+6216467102T219620p5T3+p10T4 1 - 19620 T + 6216467102 T^{2} - 19620 p^{5} T^{3} + p^{10} T^{4}
83D4D_{4} 144424T+7801188630T244424p5T3+p10T4 1 - 44424 T + 7801188630 T^{2} - 44424 p^{5} T^{3} + p^{10} T^{4}
89D4D_{4} 1211218T+21434789410T2211218p5T3+p10T4 1 - 211218 T + 21434789410 T^{2} - 211218 p^{5} T^{3} + p^{10} T^{4}
97D4D_{4} 144864T+3170652414T244864p5T3+p10T4 1 - 44864 T + 3170652414 T^{2} - 44864 p^{5} T^{3} + p^{10} T^{4}
show more
show less
   L(s)=p j=14(1αj,pps)1L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}

Imaginary part of the first few zeros on the critical line

−10.73788599517428886758987050178, −10.44147114544742815034583253928, −9.852175836271121160601702220569, −9.838091991585157595872018825899, −8.714421872354062741163639907927, −8.579527667719131918440022482136, −8.283174240860898497130290318137, −7.77020517252972137557275260862, −7.44018738515136511795267339551, −6.47757871611835141016767793675, −6.20552494357699353835144655441, −5.72192341657863177969015414653, −4.62550956661090358858451257153, −4.50468082853022188551645698945, −3.57446630670126067340443351805, −3.51442178027130394397653100223, −2.42105519681349864822015371746, −2.03332029023314144094760677985, −1.25130220709984621670630565175, −0.68576481482159037703123855094, 0.68576481482159037703123855094, 1.25130220709984621670630565175, 2.03332029023314144094760677985, 2.42105519681349864822015371746, 3.51442178027130394397653100223, 3.57446630670126067340443351805, 4.50468082853022188551645698945, 4.62550956661090358858451257153, 5.72192341657863177969015414653, 6.20552494357699353835144655441, 6.47757871611835141016767793675, 7.44018738515136511795267339551, 7.77020517252972137557275260862, 8.283174240860898497130290318137, 8.579527667719131918440022482136, 8.714421872354062741163639907927, 9.838091991585157595872018825899, 9.852175836271121160601702220569, 10.44147114544742815034583253928, 10.73788599517428886758987050178

Graph of the ZZ-function along the critical line