L(s) = 1 | + 18·3-s − 6·5-s + 98·7-s + 243·9-s + 90·11-s + 768·13-s − 108·15-s + 1.92e3·17-s − 2.24e3·19-s + 1.76e3·21-s − 6.35e3·23-s − 654·25-s + 2.91e3·27-s + 1.05e4·29-s + 3.31e3·31-s + 1.62e3·33-s − 588·35-s + 2.10e3·37-s + 1.38e4·39-s + 1.26e3·41-s + 5.76e3·43-s − 1.45e3·45-s − 1.56e4·47-s + 7.20e3·49-s + 3.46e4·51-s + 1.65e4·53-s − 540·55-s + ⋯ |
L(s) = 1 | + 1.15·3-s − 0.107·5-s + 0.755·7-s + 9-s + 0.224·11-s + 1.26·13-s − 0.123·15-s + 1.61·17-s − 1.42·19-s + 0.872·21-s − 2.50·23-s − 0.209·25-s + 0.769·27-s + 2.33·29-s + 0.618·31-s + 0.258·33-s − 0.0811·35-s + 0.252·37-s + 1.45·39-s + 0.117·41-s + 0.475·43-s − 0.107·45-s − 1.03·47-s + 3/7·49-s + 1.86·51-s + 0.807·53-s − 0.0240·55-s + ⋯ |
Λ(s)=(=(112896s/2ΓC(s)2L(s)Λ(6−s)
Λ(s)=(=(112896s/2ΓC(s+5/2)2L(s)Λ(1−s)
Degree: |
4 |
Conductor: |
112896
= 28⋅32⋅72
|
Sign: |
1
|
Analytic conductor: |
2904.02 |
Root analytic conductor: |
7.34091 |
Motivic weight: |
5 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(4, 112896, ( :5/2,5/2), 1)
|
Particular Values
L(3) |
≈ |
6.991669387 |
L(21) |
≈ |
6.991669387 |
L(27) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | | 1 |
| 3 | C1 | (1−p2T)2 |
| 7 | C1 | (1−p2T)2 |
good | 5 | D4 | 1+6T+138pT2+6p5T3+p10T4 |
| 11 | D4 | 1−90T+51246T2−90p5T3+p10T4 |
| 13 | D4 | 1−768T+689558T2−768p5T3+p10T4 |
| 17 | D4 | 1−1926T+3761514T2−1926p5T3+p10T4 |
| 19 | D4 | 1+2248T+3007830T2+2248p5T3+p10T4 |
| 23 | D4 | 1+6354T+22960446T2+6354p5T3+p10T4 |
| 29 | D4 | 1−10572T+60053694T2−10572p5T3+p10T4 |
| 31 | D4 | 1−3312T+31130942T2−3312p5T3+p10T4 |
| 37 | D4 | 1−2104T+14492118T2−2104p5T3+p10T4 |
| 41 | D4 | 1−1266T+226048450T2−1266p5T3+p10T4 |
| 43 | D4 | 1−5768T−18440058T2−5768p5T3+p10T4 |
| 47 | D4 | 1+15612T+373470814T2+15612p5T3+p10T4 |
| 53 | D4 | 1−16512T+599616358T2−16512p5T3+p10T4 |
| 59 | D4 | 1−13140T+1459090998T2−13140p5T3+p10T4 |
| 61 | D4 | 1+5796T+1309453982T2+5796p5T3+p10T4 |
| 67 | D4 | 1−56116T+2298831942T2−56116p5T3+p10T4 |
| 71 | D4 | 1+11022T−822078402T2+11022p5T3+p10T4 |
| 73 | D4 | 1+85384T+5800143006T2+85384p5T3+p10T4 |
| 79 | D4 | 1−19620T+6216467102T2−19620p5T3+p10T4 |
| 83 | D4 | 1−44424T+7801188630T2−44424p5T3+p10T4 |
| 89 | D4 | 1−211218T+21434789410T2−211218p5T3+p10T4 |
| 97 | D4 | 1−44864T+3170652414T2−44864p5T3+p10T4 |
show more | | |
show less | | |
L(s)=p∏ j=1∏4(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.73788599517428886758987050178, −10.44147114544742815034583253928, −9.852175836271121160601702220569, −9.838091991585157595872018825899, −8.714421872354062741163639907927, −8.579527667719131918440022482136, −8.283174240860898497130290318137, −7.77020517252972137557275260862, −7.44018738515136511795267339551, −6.47757871611835141016767793675, −6.20552494357699353835144655441, −5.72192341657863177969015414653, −4.62550956661090358858451257153, −4.50468082853022188551645698945, −3.57446630670126067340443351805, −3.51442178027130394397653100223, −2.42105519681349864822015371746, −2.03332029023314144094760677985, −1.25130220709984621670630565175, −0.68576481482159037703123855094,
0.68576481482159037703123855094, 1.25130220709984621670630565175, 2.03332029023314144094760677985, 2.42105519681349864822015371746, 3.51442178027130394397653100223, 3.57446630670126067340443351805, 4.50468082853022188551645698945, 4.62550956661090358858451257153, 5.72192341657863177969015414653, 6.20552494357699353835144655441, 6.47757871611835141016767793675, 7.44018738515136511795267339551, 7.77020517252972137557275260862, 8.283174240860898497130290318137, 8.579527667719131918440022482136, 8.714421872354062741163639907927, 9.838091991585157595872018825899, 9.852175836271121160601702220569, 10.44147114544742815034583253928, 10.73788599517428886758987050178