Properties

Label 4-338688-1.1-c1e2-0-53
Degree $4$
Conductor $338688$
Sign $-1$
Analytic cond. $21.5950$
Root an. cond. $2.15570$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3·3-s + 3·7-s + 6·9-s − 6·19-s − 9·21-s + 8·25-s − 9·27-s − 9·29-s + 6·31-s + 6·37-s − 15·47-s + 2·49-s − 9·53-s + 18·57-s − 12·59-s + 18·63-s − 24·75-s + 9·81-s − 15·83-s + 27·87-s − 18·93-s − 6·103-s − 18·111-s + 27·113-s − 12·121-s + 127-s + 131-s + ⋯
L(s)  = 1  − 1.73·3-s + 1.13·7-s + 2·9-s − 1.37·19-s − 1.96·21-s + 8/5·25-s − 1.73·27-s − 1.67·29-s + 1.07·31-s + 0.986·37-s − 2.18·47-s + 2/7·49-s − 1.23·53-s + 2.38·57-s − 1.56·59-s + 2.26·63-s − 2.77·75-s + 81-s − 1.64·83-s + 2.89·87-s − 1.86·93-s − 0.591·103-s − 1.70·111-s + 2.53·113-s − 1.09·121-s + 0.0887·127-s + 0.0873·131-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 338688 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 338688 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(338688\)    =    \(2^{8} \cdot 3^{3} \cdot 7^{2}\)
Sign: $-1$
Analytic conductor: \(21.5950\)
Root analytic conductor: \(2.15570\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((4,\ 338688,\ (\ :1/2, 1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
3$C_2$ \( 1 + p T + p T^{2} \)
7$C_2$ \( 1 - 3 T + p T^{2} \)
good5$C_2^2$ \( 1 - 8 T^{2} + p^{2} T^{4} \)
11$C_2^2$ \( 1 + 12 T^{2} + p^{2} T^{4} \)
13$C_2^2$ \( 1 + 19 T^{2} + p^{2} T^{4} \)
17$C_2^2$ \( 1 + 16 T^{2} + p^{2} T^{4} \)
19$C_2$$\times$$C_2$ \( ( 1 + p T^{2} )( 1 + 6 T + p T^{2} ) \)
23$C_2^2$ \( 1 + 18 T^{2} + p^{2} T^{4} \)
29$C_2$$\times$$C_2$ \( ( 1 + 2 T + p T^{2} )( 1 + 7 T + p T^{2} ) \)
31$C_2$$\times$$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + p T^{2} ) \)
37$C_2$ \( ( 1 - 3 T + p T^{2} )^{2} \)
41$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
43$C_2^2$ \( 1 + 23 T^{2} + p^{2} T^{4} \)
47$C_2$$\times$$C_2$ \( ( 1 + 3 T + p T^{2} )( 1 + 12 T + p T^{2} ) \)
53$C_2$$\times$$C_2$ \( ( 1 - T + p T^{2} )( 1 + 10 T + p T^{2} ) \)
59$C_2$$\times$$C_2$ \( ( 1 + p T^{2} )( 1 + 12 T + p T^{2} ) \)
61$C_2^2$ \( 1 - 59 T^{2} + p^{2} T^{4} \)
67$C_2^2$ \( 1 + 73 T^{2} + p^{2} T^{4} \)
71$C_2^2$ \( 1 - 66 T^{2} + p^{2} T^{4} \)
73$C_2^2$ \( 1 - 29 T^{2} + p^{2} T^{4} \)
79$C_2^2$ \( 1 + 31 T^{2} + p^{2} T^{4} \)
83$C_2$$\times$$C_2$ \( ( 1 + 6 T + p T^{2} )( 1 + 9 T + p T^{2} ) \)
89$C_2^2$ \( 1 - 110 T^{2} + p^{2} T^{4} \)
97$C_2^2$ \( 1 - 50 T^{2} + p^{2} T^{4} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.432836198463597486149328755620, −8.050160623992353513743363763081, −7.50547118111690756540173460213, −7.04206038819788460169294925765, −6.44171806597024004178258496488, −6.22056409017451747702989808040, −5.69109468279723566186540139034, −5.04004363215558633657932131885, −4.64972987661208186595738004351, −4.50916617892083646666542145946, −3.65686786420722870998736063605, −2.76958460171482420780189928660, −1.79952763418592248967346027622, −1.24416744807409352638624365519, 0, 1.24416744807409352638624365519, 1.79952763418592248967346027622, 2.76958460171482420780189928660, 3.65686786420722870998736063605, 4.50916617892083646666542145946, 4.64972987661208186595738004351, 5.04004363215558633657932131885, 5.69109468279723566186540139034, 6.22056409017451747702989808040, 6.44171806597024004178258496488, 7.04206038819788460169294925765, 7.50547118111690756540173460213, 8.050160623992353513743363763081, 8.432836198463597486149328755620

Graph of the $Z$-function along the critical line