L(s) = 1 | − 3-s − 2·5-s + 9-s + 2·15-s − 12·19-s − 25-s − 27-s − 4·43-s − 2·45-s + 8·47-s + 10·49-s − 4·53-s + 12·57-s + 4·67-s − 12·71-s − 8·73-s + 75-s + 81-s + 24·95-s + 12·97-s + 12·101-s − 10·121-s + 12·125-s + 127-s + 4·129-s + 131-s + 2·135-s + ⋯ |
L(s) = 1 | − 0.577·3-s − 0.894·5-s + 1/3·9-s + 0.516·15-s − 2.75·19-s − 1/5·25-s − 0.192·27-s − 0.609·43-s − 0.298·45-s + 1.16·47-s + 10/7·49-s − 0.549·53-s + 1.58·57-s + 0.488·67-s − 1.42·71-s − 0.936·73-s + 0.115·75-s + 1/9·81-s + 2.46·95-s + 1.21·97-s + 1.19·101-s − 0.909·121-s + 1.07·125-s + 0.0887·127-s + 0.352·129-s + 0.0873·131-s + 0.172·135-s + ⋯ |
Λ(s)=(=(345600s/2ΓC(s)2L(s)Λ(2−s)
Λ(s)=(=(345600s/2ΓC(s+1/2)2L(s)Λ(1−s)
Degree: |
4 |
Conductor: |
345600
= 29⋅33⋅52
|
Sign: |
1
|
Analytic conductor: |
22.0357 |
Root analytic conductor: |
2.16661 |
Motivic weight: |
1 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
yes
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(4, 345600, ( :1/2,1/2), 1)
|
Particular Values
L(1) |
≈ |
0.6831964253 |
L(21) |
≈ |
0.6831964253 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | | 1 |
| 3 | C1 | 1+T |
| 5 | C2 | 1+2T+pT2 |
good | 7 | C22 | 1−10T2+p2T4 |
| 11 | C22 | 1+10T2+p2T4 |
| 13 | C22 | 1+18T2+p2T4 |
| 17 | C22 | 1−10T2+p2T4 |
| 19 | C2×C2 | (1+4T+pT2)(1+8T+pT2) |
| 23 | C2 | (1−4T+pT2)(1+4T+pT2) |
| 29 | C2 | (1−2T+pT2)(1+2T+pT2) |
| 31 | C22 | 1+38T2+p2T4 |
| 37 | C22 | 1−38T2+p2T4 |
| 41 | C22 | 1−26T2+p2T4 |
| 43 | C2×C2 | (1+pT2)(1+4T+pT2) |
| 47 | C2×C2 | (1−8T+pT2)(1+pT2) |
| 53 | C2×C2 | (1−6T+pT2)(1+10T+pT2) |
| 59 | C22 | 1+2T2+p2T4 |
| 61 | C22 | 1−58T2+p2T4 |
| 67 | C2×C2 | (1−12T+pT2)(1+8T+pT2) |
| 71 | C2×C2 | (1+pT2)(1+12T+pT2) |
| 73 | C2×C2 | (1+2T+pT2)(1+6T+pT2) |
| 79 | C22 | 1−90T2+p2T4 |
| 83 | C2 | (1−16T+pT2)(1+16T+pT2) |
| 89 | C22 | 1−90T2+p2T4 |
| 97 | C2×C2 | (1−10T+pT2)(1−2T+pT2) |
show more | | |
show less | | |
L(s)=p∏ j=1∏4(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.796523279169400324099811274199, −8.311117487892413678982025088035, −7.71916516278321719237455267489, −7.45291882652318289749379821721, −6.74822994356548814377277210941, −6.50122389996814390419899237868, −5.88978115346659328854413481568, −5.51271162729538474767227340615, −4.67629508369109499467730348616, −4.30042216411982689284177737617, −3.99884352876894801076363929522, −3.25909981327213640380196307522, −2.40621497002503574889419611187, −1.77015580864553681627788006708, −0.47534095433036505976960674830,
0.47534095433036505976960674830, 1.77015580864553681627788006708, 2.40621497002503574889419611187, 3.25909981327213640380196307522, 3.99884352876894801076363929522, 4.30042216411982689284177737617, 4.67629508369109499467730348616, 5.51271162729538474767227340615, 5.88978115346659328854413481568, 6.50122389996814390419899237868, 6.74822994356548814377277210941, 7.45291882652318289749379821721, 7.71916516278321719237455267489, 8.311117487892413678982025088035, 8.796523279169400324099811274199