Properties

Label 4-345600-1.1-c1e2-0-14
Degree 44
Conductor 345600345600
Sign 11
Analytic cond. 22.035722.0357
Root an. cond. 2.166612.16661
Motivic weight 11
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank 00

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3-s + 2·5-s + 9-s + 2·15-s − 25-s + 27-s + 2·45-s + 10·49-s + 20·53-s − 75-s + 16·79-s + 81-s − 8·83-s − 8·107-s + 18·121-s − 12·125-s + 127-s + 131-s + 2·135-s + 137-s + 139-s + 10·147-s + 149-s + 151-s + 157-s + 20·159-s + 163-s + ⋯
L(s)  = 1  + 0.577·3-s + 0.894·5-s + 1/3·9-s + 0.516·15-s − 1/5·25-s + 0.192·27-s + 0.298·45-s + 10/7·49-s + 2.74·53-s − 0.115·75-s + 1.80·79-s + 1/9·81-s − 0.878·83-s − 0.773·107-s + 1.63·121-s − 1.07·125-s + 0.0887·127-s + 0.0873·131-s + 0.172·135-s + 0.0854·137-s + 0.0848·139-s + 0.824·147-s + 0.0819·149-s + 0.0813·151-s + 0.0798·157-s + 1.58·159-s + 0.0783·163-s + ⋯

Functional equation

Λ(s)=(345600s/2ΓC(s)2L(s)=(Λ(2s)\begin{aligned}\Lambda(s)=\mathstrut & 345600 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}
Λ(s)=(345600s/2ΓC(s+1/2)2L(s)=(Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 345600 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}

Invariants

Degree: 44
Conductor: 345600345600    =    2933522^{9} \cdot 3^{3} \cdot 5^{2}
Sign: 11
Analytic conductor: 22.035722.0357
Root analytic conductor: 2.166612.16661
Motivic weight: 11
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: 00
Selberg data: (4, 345600, ( :1/2,1/2), 1)(4,\ 345600,\ (\ :1/2, 1/2),\ 1)

Particular Values

L(1)L(1) \approx 2.7528192542.752819254
L(12)L(\frac12) \approx 2.7528192542.752819254
L(32)L(\frac{3}{2}) not available
L(1)L(1) not available

Euler product

   L(s)=pFp(ps)1L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1}
ppGal(Fp)\Gal(F_p)Fp(T)F_p(T)
bad2 1 1
3C1C_1 1T 1 - T
5C2C_2 12T+pT2 1 - 2 T + p T^{2}
good7C22C_2^2 110T2+p2T4 1 - 10 T^{2} + p^{2} T^{4}
11C22C_2^2 118T2+p2T4 1 - 18 T^{2} + p^{2} T^{4}
13C2C_2 (12T+pT2)(1+2T+pT2) ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} )
17C2C_2 (16T+pT2)(1+6T+pT2) ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} )
19C2C_2 (18T+pT2)(1+8T+pT2) ( 1 - 8 T + p T^{2} )( 1 + 8 T + p T^{2} )
23C2C_2 (14T+pT2)(1+4T+pT2) ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} )
29C22C_2^2 1+6T2+p2T4 1 + 6 T^{2} + p^{2} T^{4}
31C2C_2 (1+pT2)2 ( 1 + p T^{2} )^{2}
37C2C_2 (110T+pT2)(1+10T+pT2) ( 1 - 10 T + p T^{2} )( 1 + 10 T + p T^{2} )
41C2C_2 (12T+pT2)(1+2T+pT2) ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} )
43C2C_2 (112T+pT2)(1+12T+pT2) ( 1 - 12 T + p T^{2} )( 1 + 12 T + p T^{2} )
47C2C_2 (1+pT2)2 ( 1 + p T^{2} )^{2}
53C2C_2 (110T+pT2)2 ( 1 - 10 T + p T^{2} )^{2}
59C22C_2^2 182T2+p2T4 1 - 82 T^{2} + p^{2} T^{4}
61C2C_2 (12T+pT2)(1+2T+pT2) ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} )
67C2C_2 (18T+pT2)(1+8T+pT2) ( 1 - 8 T + p T^{2} )( 1 + 8 T + p T^{2} )
71C2C_2 (14T+pT2)(1+4T+pT2) ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} )
73C22C_2^2 1130T2+p2T4 1 - 130 T^{2} + p^{2} T^{4}
79C2C_2 (18T+pT2)2 ( 1 - 8 T + p T^{2} )^{2}
83C2C_2 (1+4T+pT2)2 ( 1 + 4 T + p T^{2} )^{2}
89C2C_2 (16T+pT2)(1+6T+pT2) ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} )
97C2C_2 (118T+pT2)(1+18T+pT2) ( 1 - 18 T + p T^{2} )( 1 + 18 T + p T^{2} )
show more
show less
   L(s)=p j=14(1αj,pps)1L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}

Imaginary part of the first few zeros on the critical line

−8.804232518711272914975833640674, −8.339729437170921920814564547387, −7.88588785443659664968877050779, −7.29400030072680013487098644789, −6.95462669840527913917302121355, −6.43993342010759876282540261240, −5.72009755866980912480255592736, −5.60378398018998027832781220942, −4.89860843972320382069008847636, −4.21523796332319060680877486200, −3.79343751691397527212267079179, −3.06378196949189061119331802386, −2.37025221506316933204103603555, −1.96518584136898307589002473995, −0.950269898347283123135741361773, 0.950269898347283123135741361773, 1.96518584136898307589002473995, 2.37025221506316933204103603555, 3.06378196949189061119331802386, 3.79343751691397527212267079179, 4.21523796332319060680877486200, 4.89860843972320382069008847636, 5.60378398018998027832781220942, 5.72009755866980912480255592736, 6.43993342010759876282540261240, 6.95462669840527913917302121355, 7.29400030072680013487098644789, 7.88588785443659664968877050779, 8.339729437170921920814564547387, 8.804232518711272914975833640674

Graph of the ZZ-function along the critical line