Properties

Label 4-345600-1.1-c1e2-0-14
Degree $4$
Conductor $345600$
Sign $1$
Analytic cond. $22.0357$
Root an. cond. $2.16661$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3-s + 2·5-s + 9-s + 2·15-s − 25-s + 27-s + 2·45-s + 10·49-s + 20·53-s − 75-s + 16·79-s + 81-s − 8·83-s − 8·107-s + 18·121-s − 12·125-s + 127-s + 131-s + 2·135-s + 137-s + 139-s + 10·147-s + 149-s + 151-s + 157-s + 20·159-s + 163-s + ⋯
L(s)  = 1  + 0.577·3-s + 0.894·5-s + 1/3·9-s + 0.516·15-s − 1/5·25-s + 0.192·27-s + 0.298·45-s + 10/7·49-s + 2.74·53-s − 0.115·75-s + 1.80·79-s + 1/9·81-s − 0.878·83-s − 0.773·107-s + 1.63·121-s − 1.07·125-s + 0.0887·127-s + 0.0873·131-s + 0.172·135-s + 0.0854·137-s + 0.0848·139-s + 0.824·147-s + 0.0819·149-s + 0.0813·151-s + 0.0798·157-s + 1.58·159-s + 0.0783·163-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 345600 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 345600 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(345600\)    =    \(2^{9} \cdot 3^{3} \cdot 5^{2}\)
Sign: $1$
Analytic conductor: \(22.0357\)
Root analytic conductor: \(2.16661\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 345600,\ (\ :1/2, 1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(2.752819254\)
\(L(\frac12)\) \(\approx\) \(2.752819254\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
3$C_1$ \( 1 - T \)
5$C_2$ \( 1 - 2 T + p T^{2} \)
good7$C_2^2$ \( 1 - 10 T^{2} + p^{2} T^{4} \)
11$C_2^2$ \( 1 - 18 T^{2} + p^{2} T^{4} \)
13$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
17$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
19$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + 8 T + p T^{2} ) \)
23$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
29$C_2^2$ \( 1 + 6 T^{2} + p^{2} T^{4} \)
31$C_2$ \( ( 1 + p T^{2} )^{2} \)
37$C_2$ \( ( 1 - 10 T + p T^{2} )( 1 + 10 T + p T^{2} ) \)
41$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
43$C_2$ \( ( 1 - 12 T + p T^{2} )( 1 + 12 T + p T^{2} ) \)
47$C_2$ \( ( 1 + p T^{2} )^{2} \)
53$C_2$ \( ( 1 - 10 T + p T^{2} )^{2} \)
59$C_2^2$ \( 1 - 82 T^{2} + p^{2} T^{4} \)
61$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
67$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + 8 T + p T^{2} ) \)
71$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
73$C_2^2$ \( 1 - 130 T^{2} + p^{2} T^{4} \)
79$C_2$ \( ( 1 - 8 T + p T^{2} )^{2} \)
83$C_2$ \( ( 1 + 4 T + p T^{2} )^{2} \)
89$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
97$C_2$ \( ( 1 - 18 T + p T^{2} )( 1 + 18 T + p T^{2} ) \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.804232518711272914975833640674, −8.339729437170921920814564547387, −7.88588785443659664968877050779, −7.29400030072680013487098644789, −6.95462669840527913917302121355, −6.43993342010759876282540261240, −5.72009755866980912480255592736, −5.60378398018998027832781220942, −4.89860843972320382069008847636, −4.21523796332319060680877486200, −3.79343751691397527212267079179, −3.06378196949189061119331802386, −2.37025221506316933204103603555, −1.96518584136898307589002473995, −0.950269898347283123135741361773, 0.950269898347283123135741361773, 1.96518584136898307589002473995, 2.37025221506316933204103603555, 3.06378196949189061119331802386, 3.79343751691397527212267079179, 4.21523796332319060680877486200, 4.89860843972320382069008847636, 5.60378398018998027832781220942, 5.72009755866980912480255592736, 6.43993342010759876282540261240, 6.95462669840527913917302121355, 7.29400030072680013487098644789, 7.88588785443659664968877050779, 8.339729437170921920814564547387, 8.804232518711272914975833640674

Graph of the $Z$-function along the critical line