Properties

Label 4-345600-1.1-c1e2-0-2
Degree $4$
Conductor $345600$
Sign $1$
Analytic cond. $22.0357$
Root an. cond. $2.16661$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3-s − 2·5-s + 9-s + 2·15-s − 25-s − 27-s − 2·45-s + 10·49-s − 20·53-s + 75-s + 16·79-s + 81-s + 8·83-s + 8·107-s + 18·121-s + 12·125-s + 127-s + 131-s + 2·135-s + 137-s + 139-s − 10·147-s + 149-s + 151-s + 157-s + 20·159-s + 163-s + ⋯
L(s)  = 1  − 0.577·3-s − 0.894·5-s + 1/3·9-s + 0.516·15-s − 1/5·25-s − 0.192·27-s − 0.298·45-s + 10/7·49-s − 2.74·53-s + 0.115·75-s + 1.80·79-s + 1/9·81-s + 0.878·83-s + 0.773·107-s + 1.63·121-s + 1.07·125-s + 0.0887·127-s + 0.0873·131-s + 0.172·135-s + 0.0854·137-s + 0.0848·139-s − 0.824·147-s + 0.0819·149-s + 0.0813·151-s + 0.0798·157-s + 1.58·159-s + 0.0783·163-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 345600 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 345600 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(345600\)    =    \(2^{9} \cdot 3^{3} \cdot 5^{2}\)
Sign: $1$
Analytic conductor: \(22.0357\)
Root analytic conductor: \(2.16661\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 345600,\ (\ :1/2, 1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(0.9176064180\)
\(L(\frac12)\) \(\approx\) \(0.9176064180\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
3$C_1$ \( 1 + T \)
5$C_2$ \( 1 + 2 T + p T^{2} \)
good7$C_2^2$ \( 1 - 10 T^{2} + p^{2} T^{4} \)
11$C_2^2$ \( 1 - 18 T^{2} + p^{2} T^{4} \)
13$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
17$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
19$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + 8 T + p T^{2} ) \)
23$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
29$C_2^2$ \( 1 + 6 T^{2} + p^{2} T^{4} \)
31$C_2$ \( ( 1 + p T^{2} )^{2} \)
37$C_2$ \( ( 1 - 10 T + p T^{2} )( 1 + 10 T + p T^{2} ) \)
41$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
43$C_2$ \( ( 1 - 12 T + p T^{2} )( 1 + 12 T + p T^{2} ) \)
47$C_2$ \( ( 1 + p T^{2} )^{2} \)
53$C_2$ \( ( 1 + 10 T + p T^{2} )^{2} \)
59$C_2^2$ \( 1 - 82 T^{2} + p^{2} T^{4} \)
61$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
67$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + 8 T + p T^{2} ) \)
71$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
73$C_2^2$ \( 1 - 130 T^{2} + p^{2} T^{4} \)
79$C_2$ \( ( 1 - 8 T + p T^{2} )^{2} \)
83$C_2$ \( ( 1 - 4 T + p T^{2} )^{2} \)
89$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
97$C_2$ \( ( 1 - 18 T + p T^{2} )( 1 + 18 T + p T^{2} ) \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.720556122204919940787114226817, −8.127280331995193708455482208382, −7.85101984287289917616469398437, −7.34999160539775999043577503268, −6.95203567399306177371933355135, −6.31795351810838792684187487407, −5.99939825891420261041909475864, −5.37595707552247311413898151676, −4.76079991274913578801014190589, −4.46360011835707575831995568528, −3.70428071362386722458673170717, −3.37528171703364868655624815248, −2.48435940156910725970454962683, −1.65720388043715485575795658732, −0.57100453902310593927136460717, 0.57100453902310593927136460717, 1.65720388043715485575795658732, 2.48435940156910725970454962683, 3.37528171703364868655624815248, 3.70428071362386722458673170717, 4.46360011835707575831995568528, 4.76079991274913578801014190589, 5.37595707552247311413898151676, 5.99939825891420261041909475864, 6.31795351810838792684187487407, 6.95203567399306177371933355135, 7.34999160539775999043577503268, 7.85101984287289917616469398437, 8.127280331995193708455482208382, 8.720556122204919940787114226817

Graph of the $Z$-function along the critical line