L(s) = 1 | − 3-s + 9-s + 4·17-s − 8·19-s − 25-s − 27-s + 8·41-s − 8·43-s − 2·49-s − 4·51-s + 8·57-s − 16·59-s + 8·67-s − 4·73-s + 75-s + 81-s − 8·83-s + 8·89-s − 28·97-s + 8·107-s − 20·113-s − 18·121-s − 8·123-s + 127-s + 8·129-s + 131-s + 137-s + ⋯ |
L(s) = 1 | − 0.577·3-s + 1/3·9-s + 0.970·17-s − 1.83·19-s − 1/5·25-s − 0.192·27-s + 1.24·41-s − 1.21·43-s − 2/7·49-s − 0.560·51-s + 1.05·57-s − 2.08·59-s + 0.977·67-s − 0.468·73-s + 0.115·75-s + 1/9·81-s − 0.878·83-s + 0.847·89-s − 2.84·97-s + 0.773·107-s − 1.88·113-s − 1.63·121-s − 0.721·123-s + 0.0887·127-s + 0.704·129-s + 0.0873·131-s + 0.0854·137-s + ⋯ |
Λ(s)=(=(345600s/2ΓC(s)2L(s)−Λ(2−s)
Λ(s)=(=(345600s/2ΓC(s+1/2)2L(s)−Λ(1−s)
Degree: |
4 |
Conductor: |
345600
= 29⋅33⋅52
|
Sign: |
−1
|
Analytic conductor: |
22.0357 |
Root analytic conductor: |
2.16661 |
Motivic weight: |
1 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
yes
|
Self-dual: |
yes
|
Analytic rank: |
1
|
Selberg data: |
(4, 345600, ( :1/2,1/2), −1)
|
Particular Values
L(1) |
= |
0 |
L(21) |
= |
0 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | | 1 |
| 3 | C1 | 1+T |
| 5 | C2 | 1+T2 |
good | 7 | C22 | 1+2T2+p2T4 |
| 11 | C2 | (1−2T+pT2)(1+2T+pT2) |
| 13 | C22 | 1−6T2+p2T4 |
| 17 | C2×C2 | (1−4T+pT2)(1+pT2) |
| 19 | C2×C2 | (1+pT2)(1+8T+pT2) |
| 23 | C22 | 1−2T2+p2T4 |
| 29 | C22 | 1+26T2+p2T4 |
| 31 | C22 | 1−18T2+p2T4 |
| 37 | C22 | 1−54T2+p2T4 |
| 41 | C2×C2 | (1−6T+pT2)(1−2T+pT2) |
| 43 | C2 | (1+4T+pT2)2 |
| 47 | C22 | 1−34T2+p2T4 |
| 53 | C22 | 1+10T2+p2T4 |
| 59 | C2×C2 | (1+6T+pT2)(1+10T+pT2) |
| 61 | C22 | 1+102T2+p2T4 |
| 67 | C2 | (1−4T+pT2)2 |
| 71 | C22 | 1−34T2+p2T4 |
| 73 | C2×C2 | (1−6T+pT2)(1+10T+pT2) |
| 79 | C22 | 1+110T2+p2T4 |
| 83 | C2×C2 | (1−4T+pT2)(1+12T+pT2) |
| 89 | C2×C2 | (1−6T+pT2)(1−2T+pT2) |
| 97 | C2×C2 | (1+10T+pT2)(1+18T+pT2) |
show more | | |
show less | | |
L(s)=p∏ j=1∏4(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.346291720121995717712093975596, −8.124319318961205390000648166586, −7.61948249871416466715769020252, −7.01807698922579834014571363934, −6.59751880432142696160633479249, −6.14527405832827378577925110928, −5.69478256156717491270165659232, −5.21106317421538041180495208875, −4.51900425270164728349791276127, −4.21343282699377366119345913002, −3.50903017322962956121673785600, −2.83664421549346698687301375081, −2.05129353552081938000857796892, −1.27841005985528659821354329133, 0,
1.27841005985528659821354329133, 2.05129353552081938000857796892, 2.83664421549346698687301375081, 3.50903017322962956121673785600, 4.21343282699377366119345913002, 4.51900425270164728349791276127, 5.21106317421538041180495208875, 5.69478256156717491270165659232, 6.14527405832827378577925110928, 6.59751880432142696160633479249, 7.01807698922579834014571363934, 7.61948249871416466715769020252, 8.124319318961205390000648166586, 8.346291720121995717712093975596