Properties

Label 4-345600-1.1-c1e2-0-26
Degree $4$
Conductor $345600$
Sign $-1$
Analytic cond. $22.0357$
Root an. cond. $2.16661$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3-s + 9-s + 4·17-s − 8·19-s − 25-s − 27-s + 8·41-s − 8·43-s − 2·49-s − 4·51-s + 8·57-s − 16·59-s + 8·67-s − 4·73-s + 75-s + 81-s − 8·83-s + 8·89-s − 28·97-s + 8·107-s − 20·113-s − 18·121-s − 8·123-s + 127-s + 8·129-s + 131-s + 137-s + ⋯
L(s)  = 1  − 0.577·3-s + 1/3·9-s + 0.970·17-s − 1.83·19-s − 1/5·25-s − 0.192·27-s + 1.24·41-s − 1.21·43-s − 2/7·49-s − 0.560·51-s + 1.05·57-s − 2.08·59-s + 0.977·67-s − 0.468·73-s + 0.115·75-s + 1/9·81-s − 0.878·83-s + 0.847·89-s − 2.84·97-s + 0.773·107-s − 1.88·113-s − 1.63·121-s − 0.721·123-s + 0.0887·127-s + 0.704·129-s + 0.0873·131-s + 0.0854·137-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 345600 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 345600 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(345600\)    =    \(2^{9} \cdot 3^{3} \cdot 5^{2}\)
Sign: $-1$
Analytic conductor: \(22.0357\)
Root analytic conductor: \(2.16661\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((4,\ 345600,\ (\ :1/2, 1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
3$C_1$ \( 1 + T \)
5$C_2$ \( 1 + T^{2} \)
good7$C_2^2$ \( 1 + 2 T^{2} + p^{2} T^{4} \)
11$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
13$C_2^2$ \( 1 - 6 T^{2} + p^{2} T^{4} \)
17$C_2$$\times$$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + p T^{2} ) \)
19$C_2$$\times$$C_2$ \( ( 1 + p T^{2} )( 1 + 8 T + p T^{2} ) \)
23$C_2^2$ \( 1 - 2 T^{2} + p^{2} T^{4} \)
29$C_2^2$ \( 1 + 26 T^{2} + p^{2} T^{4} \)
31$C_2^2$ \( 1 - 18 T^{2} + p^{2} T^{4} \)
37$C_2^2$ \( 1 - 54 T^{2} + p^{2} T^{4} \)
41$C_2$$\times$$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 - 2 T + p T^{2} ) \)
43$C_2$ \( ( 1 + 4 T + p T^{2} )^{2} \)
47$C_2^2$ \( 1 - 34 T^{2} + p^{2} T^{4} \)
53$C_2^2$ \( 1 + 10 T^{2} + p^{2} T^{4} \)
59$C_2$$\times$$C_2$ \( ( 1 + 6 T + p T^{2} )( 1 + 10 T + p T^{2} ) \)
61$C_2^2$ \( 1 + 102 T^{2} + p^{2} T^{4} \)
67$C_2$ \( ( 1 - 4 T + p T^{2} )^{2} \)
71$C_2^2$ \( 1 - 34 T^{2} + p^{2} T^{4} \)
73$C_2$$\times$$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 10 T + p T^{2} ) \)
79$C_2^2$ \( 1 + 110 T^{2} + p^{2} T^{4} \)
83$C_2$$\times$$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 12 T + p T^{2} ) \)
89$C_2$$\times$$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 - 2 T + p T^{2} ) \)
97$C_2$$\times$$C_2$ \( ( 1 + 10 T + p T^{2} )( 1 + 18 T + p T^{2} ) \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.346291720121995717712093975596, −8.124319318961205390000648166586, −7.61948249871416466715769020252, −7.01807698922579834014571363934, −6.59751880432142696160633479249, −6.14527405832827378577925110928, −5.69478256156717491270165659232, −5.21106317421538041180495208875, −4.51900425270164728349791276127, −4.21343282699377366119345913002, −3.50903017322962956121673785600, −2.83664421549346698687301375081, −2.05129353552081938000857796892, −1.27841005985528659821354329133, 0, 1.27841005985528659821354329133, 2.05129353552081938000857796892, 2.83664421549346698687301375081, 3.50903017322962956121673785600, 4.21343282699377366119345913002, 4.51900425270164728349791276127, 5.21106317421538041180495208875, 5.69478256156717491270165659232, 6.14527405832827378577925110928, 6.59751880432142696160633479249, 7.01807698922579834014571363934, 7.61948249871416466715769020252, 8.124319318961205390000648166586, 8.346291720121995717712093975596

Graph of the $Z$-function along the critical line