Properties

Label 4-350e2-1.1-c1e2-0-16
Degree $4$
Conductor $122500$
Sign $1$
Analytic cond. $7.81070$
Root an. cond. $1.67175$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s + 3-s − 6-s + 7-s + 8-s + 3·9-s + 6·11-s + 8·13-s − 14-s − 16-s − 3·18-s − 2·19-s + 21-s − 6·22-s − 3·23-s + 24-s − 8·26-s + 8·27-s − 6·29-s − 8·31-s + 6·33-s − 4·37-s + 2·38-s + 8·39-s + 18·41-s − 42-s + 14·43-s + ⋯
L(s)  = 1  − 0.707·2-s + 0.577·3-s − 0.408·6-s + 0.377·7-s + 0.353·8-s + 9-s + 1.80·11-s + 2.21·13-s − 0.267·14-s − 1/4·16-s − 0.707·18-s − 0.458·19-s + 0.218·21-s − 1.27·22-s − 0.625·23-s + 0.204·24-s − 1.56·26-s + 1.53·27-s − 1.11·29-s − 1.43·31-s + 1.04·33-s − 0.657·37-s + 0.324·38-s + 1.28·39-s + 2.81·41-s − 0.154·42-s + 2.13·43-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 122500 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 122500 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(122500\)    =    \(2^{2} \cdot 5^{4} \cdot 7^{2}\)
Sign: $1$
Analytic conductor: \(7.81070\)
Root analytic conductor: \(1.67175\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 122500,\ (\ :1/2, 1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.777786066\)
\(L(\frac12)\) \(\approx\) \(1.777786066\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2$C_2$ \( 1 + T + T^{2} \)
5 \( 1 \)
7$C_2$ \( 1 - T + p T^{2} \)
good3$C_2^2$ \( 1 - T - 2 T^{2} - p T^{3} + p^{2} T^{4} \)
11$C_2^2$ \( 1 - 6 T + 25 T^{2} - 6 p T^{3} + p^{2} T^{4} \)
13$C_2$ \( ( 1 - 4 T + p T^{2} )^{2} \)
17$C_2^2$ \( 1 - p T^{2} + p^{2} T^{4} \)
19$C_2^2$ \( 1 + 2 T - 15 T^{2} + 2 p T^{3} + p^{2} T^{4} \)
23$C_2^2$ \( 1 + 3 T - 14 T^{2} + 3 p T^{3} + p^{2} T^{4} \)
29$C_2$ \( ( 1 + 3 T + p T^{2} )^{2} \)
31$C_2^2$ \( 1 + 8 T + 33 T^{2} + 8 p T^{3} + p^{2} T^{4} \)
37$C_2^2$ \( 1 + 4 T - 21 T^{2} + 4 p T^{3} + p^{2} T^{4} \)
41$C_2$ \( ( 1 - 9 T + p T^{2} )^{2} \)
43$C_2$ \( ( 1 - 7 T + p T^{2} )^{2} \)
47$C_2^2$ \( 1 - p T^{2} + p^{2} T^{4} \)
53$C_2^2$ \( 1 + 6 T - 17 T^{2} + 6 p T^{3} + p^{2} T^{4} \)
59$C_2^2$ \( 1 - 6 T - 23 T^{2} - 6 p T^{3} + p^{2} T^{4} \)
61$C_2^2$ \( 1 + 5 T - 36 T^{2} + 5 p T^{3} + p^{2} T^{4} \)
67$C_2$ \( ( 1 - 16 T + p T^{2} )( 1 + 11 T + p T^{2} ) \)
71$C_2$ \( ( 1 + 6 T + p T^{2} )^{2} \)
73$C_2^2$ \( 1 + 16 T + 183 T^{2} + 16 p T^{3} + p^{2} T^{4} \)
79$C_2^2$ \( 1 + 2 T - 75 T^{2} + 2 p T^{3} + p^{2} T^{4} \)
83$C_2$ \( ( 1 + 3 T + p T^{2} )^{2} \)
89$C_2^2$ \( 1 - 15 T + 136 T^{2} - 15 p T^{3} + p^{2} T^{4} \)
97$C_2$ \( ( 1 + 14 T + p T^{2} )^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−11.44531500776178172422114943476, −11.14633118662792361884377904949, −10.80464514412187505352138054054, −10.40390860085647571050119551459, −9.646881200135278145608348813606, −9.189683285765849672773553132719, −9.003532390468188680012755658569, −8.708747181862142582449605468436, −7.918198123693549389279408758495, −7.73052133363762198184662013333, −6.99614545356602163056626935680, −6.56068623140851519642977026679, −5.99059187620313463522781212705, −5.53934080598421419226546320249, −4.36038292048665956218834927761, −3.95193641127438853822237163575, −3.87121871979297141974644355668, −2.71238625560086399033449734165, −1.46375846141625953745599028381, −1.37271047232170476058201585725, 1.37271047232170476058201585725, 1.46375846141625953745599028381, 2.71238625560086399033449734165, 3.87121871979297141974644355668, 3.95193641127438853822237163575, 4.36038292048665956218834927761, 5.53934080598421419226546320249, 5.99059187620313463522781212705, 6.56068623140851519642977026679, 6.99614545356602163056626935680, 7.73052133363762198184662013333, 7.918198123693549389279408758495, 8.708747181862142582449605468436, 9.003532390468188680012755658569, 9.189683285765849672773553132719, 9.646881200135278145608348813606, 10.40390860085647571050119551459, 10.80464514412187505352138054054, 11.14633118662792361884377904949, 11.44531500776178172422114943476

Graph of the $Z$-function along the critical line