L(s) = 1 | − 2-s + 3-s − 6-s + 7-s + 8-s + 3·9-s + 6·11-s + 8·13-s − 14-s − 16-s − 3·18-s − 2·19-s + 21-s − 6·22-s − 3·23-s + 24-s − 8·26-s + 8·27-s − 6·29-s − 8·31-s + 6·33-s − 4·37-s + 2·38-s + 8·39-s + 18·41-s − 42-s + 14·43-s + ⋯ |
L(s) = 1 | − 0.707·2-s + 0.577·3-s − 0.408·6-s + 0.377·7-s + 0.353·8-s + 9-s + 1.80·11-s + 2.21·13-s − 0.267·14-s − 1/4·16-s − 0.707·18-s − 0.458·19-s + 0.218·21-s − 1.27·22-s − 0.625·23-s + 0.204·24-s − 1.56·26-s + 1.53·27-s − 1.11·29-s − 1.43·31-s + 1.04·33-s − 0.657·37-s + 0.324·38-s + 1.28·39-s + 2.81·41-s − 0.154·42-s + 2.13·43-s + ⋯ |
Λ(s)=(=(122500s/2ΓC(s)2L(s)Λ(2−s)
Λ(s)=(=(122500s/2ΓC(s+1/2)2L(s)Λ(1−s)
Degree: |
4 |
Conductor: |
122500
= 22⋅54⋅72
|
Sign: |
1
|
Analytic conductor: |
7.81070 |
Root analytic conductor: |
1.67175 |
Motivic weight: |
1 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(4, 122500, ( :1/2,1/2), 1)
|
Particular Values
L(1) |
≈ |
1.777786066 |
L(21) |
≈ |
1.777786066 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | C2 | 1+T+T2 |
| 5 | | 1 |
| 7 | C2 | 1−T+pT2 |
good | 3 | C22 | 1−T−2T2−pT3+p2T4 |
| 11 | C22 | 1−6T+25T2−6pT3+p2T4 |
| 13 | C2 | (1−4T+pT2)2 |
| 17 | C22 | 1−pT2+p2T4 |
| 19 | C22 | 1+2T−15T2+2pT3+p2T4 |
| 23 | C22 | 1+3T−14T2+3pT3+p2T4 |
| 29 | C2 | (1+3T+pT2)2 |
| 31 | C22 | 1+8T+33T2+8pT3+p2T4 |
| 37 | C22 | 1+4T−21T2+4pT3+p2T4 |
| 41 | C2 | (1−9T+pT2)2 |
| 43 | C2 | (1−7T+pT2)2 |
| 47 | C22 | 1−pT2+p2T4 |
| 53 | C22 | 1+6T−17T2+6pT3+p2T4 |
| 59 | C22 | 1−6T−23T2−6pT3+p2T4 |
| 61 | C22 | 1+5T−36T2+5pT3+p2T4 |
| 67 | C2 | (1−16T+pT2)(1+11T+pT2) |
| 71 | C2 | (1+6T+pT2)2 |
| 73 | C22 | 1+16T+183T2+16pT3+p2T4 |
| 79 | C22 | 1+2T−75T2+2pT3+p2T4 |
| 83 | C2 | (1+3T+pT2)2 |
| 89 | C22 | 1−15T+136T2−15pT3+p2T4 |
| 97 | C2 | (1+14T+pT2)2 |
show more | | |
show less | | |
L(s)=p∏ j=1∏4(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.44531500776178172422114943476, −11.14633118662792361884377904949, −10.80464514412187505352138054054, −10.40390860085647571050119551459, −9.646881200135278145608348813606, −9.189683285765849672773553132719, −9.003532390468188680012755658569, −8.708747181862142582449605468436, −7.918198123693549389279408758495, −7.73052133363762198184662013333, −6.99614545356602163056626935680, −6.56068623140851519642977026679, −5.99059187620313463522781212705, −5.53934080598421419226546320249, −4.36038292048665956218834927761, −3.95193641127438853822237163575, −3.87121871979297141974644355668, −2.71238625560086399033449734165, −1.46375846141625953745599028381, −1.37271047232170476058201585725,
1.37271047232170476058201585725, 1.46375846141625953745599028381, 2.71238625560086399033449734165, 3.87121871979297141974644355668, 3.95193641127438853822237163575, 4.36038292048665956218834927761, 5.53934080598421419226546320249, 5.99059187620313463522781212705, 6.56068623140851519642977026679, 6.99614545356602163056626935680, 7.73052133363762198184662013333, 7.918198123693549389279408758495, 8.708747181862142582449605468436, 9.003532390468188680012755658569, 9.189683285765849672773553132719, 9.646881200135278145608348813606, 10.40390860085647571050119551459, 10.80464514412187505352138054054, 11.14633118662792361884377904949, 11.44531500776178172422114943476