L(s) = 1 | + 2-s − 7-s − 8-s + 3·9-s + 2·11-s − 14-s − 16-s − 7·17-s + 3·18-s + 2·22-s + 3·23-s + 12·29-s + 7·31-s − 7·34-s − 4·37-s − 14·41-s + 16·43-s + 3·46-s − 7·47-s − 6·49-s + 4·53-s + 56-s + 12·58-s + 14·59-s + 14·61-s + 7·62-s − 3·63-s + ⋯ |
L(s) = 1 | + 0.707·2-s − 0.377·7-s − 0.353·8-s + 9-s + 0.603·11-s − 0.267·14-s − 1/4·16-s − 1.69·17-s + 0.707·18-s + 0.426·22-s + 0.625·23-s + 2.22·29-s + 1.25·31-s − 1.20·34-s − 0.657·37-s − 2.18·41-s + 2.43·43-s + 0.442·46-s − 1.02·47-s − 6/7·49-s + 0.549·53-s + 0.133·56-s + 1.57·58-s + 1.82·59-s + 1.79·61-s + 0.889·62-s − 0.377·63-s + ⋯ |
Λ(s)=(=(122500s/2ΓC(s)2L(s)Λ(2−s)
Λ(s)=(=(122500s/2ΓC(s+1/2)2L(s)Λ(1−s)
Degree: |
4 |
Conductor: |
122500
= 22⋅54⋅72
|
Sign: |
1
|
Analytic conductor: |
7.81070 |
Root analytic conductor: |
1.67175 |
Motivic weight: |
1 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(4, 122500, ( :1/2,1/2), 1)
|
Particular Values
L(1) |
≈ |
2.217063219 |
L(21) |
≈ |
2.217063219 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | C2 | 1−T+T2 |
| 5 | | 1 |
| 7 | C2 | 1+T+pT2 |
good | 3 | C2 | (1−pT+pT2)(1+pT+pT2) |
| 11 | C22 | 1−2T−7T2−2pT3+p2T4 |
| 13 | C2 | (1+pT2)2 |
| 17 | C22 | 1+7T+32T2+7pT3+p2T4 |
| 19 | C22 | 1−pT2+p2T4 |
| 23 | C22 | 1−3T−14T2−3pT3+p2T4 |
| 29 | C2 | (1−6T+pT2)2 |
| 31 | C2 | (1−11T+pT2)(1+4T+pT2) |
| 37 | C22 | 1+4T−21T2+4pT3+p2T4 |
| 41 | C2 | (1+7T+pT2)2 |
| 43 | C2 | (1−8T+pT2)2 |
| 47 | C22 | 1+7T+2T2+7pT3+p2T4 |
| 53 | C22 | 1−4T−37T2−4pT3+p2T4 |
| 59 | C22 | 1−14T+137T2−14pT3+p2T4 |
| 61 | C2 | (1−13T+pT2)(1−T+pT2) |
| 67 | C22 | 1−12T+77T2−12pT3+p2T4 |
| 71 | C2 | (1+T+pT2)2 |
| 73 | C22 | 1−14T+123T2−14pT3+p2T4 |
| 79 | C22 | 1−11T+42T2−11pT3+p2T4 |
| 83 | C2 | (1+14T+pT2)2 |
| 89 | C22 | 1+7T−40T2+7pT3+p2T4 |
| 97 | C2 | (1−7T+pT2)2 |
show more | | |
show less | | |
L(s)=p∏ j=1∏4(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.86829101099404790262712064987, −11.30186564908633296258363199411, −10.91873840622636396596505910858, −10.26103845395232419857560481787, −9.828613902065009203468454290904, −9.656785970563092861908815034313, −8.675316991609847082404949933469, −8.646716636315804039807457408765, −8.116192448671307693468838603486, −7.07327476270978309141219495726, −6.80991542849221230349033387897, −6.60121912851246192474476526756, −5.96132472153781885865701835896, −4.96516076979752092931154537741, −4.88489845734171203037522675899, −4.10702267231352623105337212255, −3.76230548808931036220762617250, −2.85248647170399003682824530588, −2.20496407227810848497295250088, −1.00315219492347088514687749877,
1.00315219492347088514687749877, 2.20496407227810848497295250088, 2.85248647170399003682824530588, 3.76230548808931036220762617250, 4.10702267231352623105337212255, 4.88489845734171203037522675899, 4.96516076979752092931154537741, 5.96132472153781885865701835896, 6.60121912851246192474476526756, 6.80991542849221230349033387897, 7.07327476270978309141219495726, 8.116192448671307693468838603486, 8.646716636315804039807457408765, 8.675316991609847082404949933469, 9.656785970563092861908815034313, 9.828613902065009203468454290904, 10.26103845395232419857560481787, 10.91873840622636396596505910858, 11.30186564908633296258363199411, 11.86829101099404790262712064987