L(s) = 1 | − 2·2-s + 10·3-s − 20·6-s − 28·7-s + 8·8-s + 27·9-s − 53·11-s − 50·13-s + 56·14-s − 16·16-s + 14·17-s − 54·18-s + 95·19-s − 280·21-s + 106·22-s + 23-s + 80·24-s + 100·26-s − 190·27-s − 412·29-s − 108·31-s − 530·33-s − 28·34-s − 57·37-s − 190·38-s − 500·39-s + 486·41-s + ⋯ |
L(s) = 1 | − 0.707·2-s + 1.92·3-s − 1.36·6-s − 1.51·7-s + 0.353·8-s + 9-s − 1.45·11-s − 1.06·13-s + 1.06·14-s − 1/4·16-s + 0.199·17-s − 0.707·18-s + 1.14·19-s − 2.90·21-s + 1.02·22-s + 0.00906·23-s + 0.680·24-s + 0.754·26-s − 1.35·27-s − 2.63·29-s − 0.625·31-s − 2.79·33-s − 0.141·34-s − 0.253·37-s − 0.811·38-s − 2.05·39-s + 1.85·41-s + ⋯ |
Λ(s)=(=(122500s/2ΓC(s)2L(s)Λ(4−s)
Λ(s)=(=(122500s/2ΓC(s+3/2)2L(s)Λ(1−s)
Degree: |
4 |
Conductor: |
122500
= 22⋅54⋅72
|
Sign: |
1
|
Analytic conductor: |
426.450 |
Root analytic conductor: |
4.54430 |
Motivic weight: |
3 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(4, 122500, ( :3/2,3/2), 1)
|
Particular Values
L(2) |
≈ |
0.01042948199 |
L(21) |
≈ |
0.01042948199 |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | C2 | 1+pT+p2T2 |
| 5 | | 1 |
| 7 | C2 | 1+4pT+p3T2 |
good | 3 | C22 | 1−10T+73T2−10p3T3+p6T4 |
| 11 | C22 | 1+53T+1478T2+53p3T3+p6T4 |
| 13 | C2 | (1+25T+p3T2)2 |
| 17 | C22 | 1−14T−4717T2−14p3T3+p6T4 |
| 19 | C22 | 1−5pT+6p2T2−5p4T3+p6T4 |
| 23 | C22 | 1−T−12166T2−p3T3+p6T4 |
| 29 | C2 | (1+206T+p3T2)2 |
| 31 | C22 | 1+108T−18127T2+108p3T3+p6T4 |
| 37 | C22 | 1+57T−47404T2+57p3T3+p6T4 |
| 41 | C2 | (1−243T+p3T2)2 |
| 43 | C2 | (1+434T+p3T2)2 |
| 47 | C22 | 1+231T−50462T2+231p3T3+p6T4 |
| 53 | C22 | 1−263T−79708T2−263p3T3+p6T4 |
| 59 | C22 | 1+24T−204803T2+24p3T3+p6T4 |
| 61 | C22 | 1+116T−213525T2+116p3T3+p6T4 |
| 67 | C22 | 1+204T−259147T2+204p3T3+p6T4 |
| 71 | C2 | (1−484T+p3T2)2 |
| 73 | C22 | 1+692T+89847T2+692p3T3+p6T4 |
| 79 | C22 | 1+466T−275883T2+466p3T3+p6T4 |
| 83 | C2 | (1+228T+p3T2)2 |
| 89 | C22 | 1−362T−573925T2−362p3T3+p6T4 |
| 97 | C2 | (1+854T+p3T2)2 |
show more | | |
show less | | |
L(s)=p∏ j=1∏4(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.62653449852212042446102139838, −10.59944741008033365770995609372, −9.980884912876056519736665453697, −9.716601862681214091843336984543, −9.368383000616132148751032634179, −9.192871351758528600865688635038, −8.367380980222462789646690778089, −8.231485080810686994598404254350, −7.52470400170035615181889654244, −7.38677102647184090540279533039, −6.87663034429098675884645744904, −5.81600889575501099368160945527, −5.52145120538479514124072895137, −4.86069098557007738511345919304, −3.70778416748934452606666920858, −3.49916583501781047638451783395, −2.80864797526560914737190981383, −2.49470828326172294067253878203, −1.68917098489123767123829062158, −0.03314158824316176183718359528,
0.03314158824316176183718359528, 1.68917098489123767123829062158, 2.49470828326172294067253878203, 2.80864797526560914737190981383, 3.49916583501781047638451783395, 3.70778416748934452606666920858, 4.86069098557007738511345919304, 5.52145120538479514124072895137, 5.81600889575501099368160945527, 6.87663034429098675884645744904, 7.38677102647184090540279533039, 7.52470400170035615181889654244, 8.231485080810686994598404254350, 8.367380980222462789646690778089, 9.192871351758528600865688635038, 9.368383000616132148751032634179, 9.716601862681214091843336984543, 9.980884912876056519736665453697, 10.59944741008033365770995609372, 11.62653449852212042446102139838