L(s) = 1 | − 4·4-s − 46·9-s + 18·11-s + 16·16-s + 20·19-s − 378·29-s − 464·31-s + 184·36-s − 876·41-s − 72·44-s − 49·49-s + 1.34e3·59-s + 412·61-s − 64·64-s − 942·71-s − 80·76-s − 1.48e3·79-s + 1.38e3·81-s − 360·89-s − 828·99-s − 1.45e3·101-s + 1.38e3·109-s + 1.51e3·116-s − 2.41e3·121-s + 1.85e3·124-s + 127-s + 131-s + ⋯ |
L(s) = 1 | − 1/2·4-s − 1.70·9-s + 0.493·11-s + 1/4·16-s + 0.241·19-s − 2.42·29-s − 2.68·31-s + 0.851·36-s − 3.33·41-s − 0.246·44-s − 1/7·49-s + 2.96·59-s + 0.864·61-s − 1/8·64-s − 1.57·71-s − 0.120·76-s − 2.11·79-s + 1.90·81-s − 0.428·89-s − 0.840·99-s − 1.43·101-s + 1.21·109-s + 1.21·116-s − 1.81·121-s + 1.34·124-s + 0.000698·127-s + 0.000666·131-s + ⋯ |
Λ(s)=(=(122500s/2ΓC(s)2L(s)Λ(4−s)
Λ(s)=(=(122500s/2ΓC(s+3/2)2L(s)Λ(1−s)
Degree: |
4 |
Conductor: |
122500
= 22⋅54⋅72
|
Sign: |
1
|
Analytic conductor: |
426.450 |
Root analytic conductor: |
4.54430 |
Motivic weight: |
3 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(4, 122500, ( :3/2,3/2), 1)
|
Particular Values
L(2) |
≈ |
0.09424591143 |
L(21) |
≈ |
0.09424591143 |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | C2 | 1+p2T2 |
| 5 | | 1 |
| 7 | C2 | 1+p2T2 |
good | 3 | C22 | 1+46T2+p6T4 |
| 11 | C2 | (1−9T+p3T2)2 |
| 13 | C2 | (1−6pT+p3T2)(1+6pT+p3T2) |
| 17 | C22 | 1−610T2+p6T4 |
| 19 | C2 | (1−10T+p3T2)2 |
| 23 | C22 | 1−18709T2+p6T4 |
| 29 | C2 | (1+189T+p3T2)2 |
| 31 | C2 | (1+232T+p3T2)2 |
| 37 | C22 | 1−8281T2+p6T4 |
| 41 | C2 | (1+438T+p3T2)2 |
| 43 | C22 | 1−34405T2+p6T4 |
| 47 | C22 | 1+28550T2+p6T4 |
| 53 | C22 | 1−172438T2+p6T4 |
| 59 | C2 | (1−672T+p3T2)2 |
| 61 | C2 | (1−206T+p3T2)2 |
| 67 | C22 | 1−242725T2+p6T4 |
| 71 | C2 | (1+471T+p3T2)2 |
| 73 | C22 | 1−401038T2+p6T4 |
| 79 | C2 | (1+743T+p3T2)2 |
| 83 | C22 | 1−22p2T2+p6T4 |
| 89 | C2 | (1+180T+p3T2)2 |
| 97 | C22 | 1−1791490T2+p6T4 |
show more | | |
show less | | |
L(s)=p∏ j=1∏4(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.66192988503986676094214094391, −10.85739241904669680892210353223, −10.44394703519454479390961041763, −9.769174214227922185839992031918, −9.397529289028950408330502653531, −8.932920847735023648826039712272, −8.455863350980625372804025968261, −8.333809676569906029628408376742, −7.26627884511919658844955868587, −7.25307312667974695041238543022, −6.44710302245667124470664540980, −5.67259986714009165677218911052, −5.44139187315020638334192370373, −5.14252532814717964385580122860, −4.01036463542792585896394670172, −3.65092981487146002651057922090, −3.13735781912030899113490882638, −2.17553701446599698400587380651, −1.51419165046458572686692626278, −0.10630053046025347886711834822,
0.10630053046025347886711834822, 1.51419165046458572686692626278, 2.17553701446599698400587380651, 3.13735781912030899113490882638, 3.65092981487146002651057922090, 4.01036463542792585896394670172, 5.14252532814717964385580122860, 5.44139187315020638334192370373, 5.67259986714009165677218911052, 6.44710302245667124470664540980, 7.25307312667974695041238543022, 7.26627884511919658844955868587, 8.333809676569906029628408376742, 8.455863350980625372804025968261, 8.932920847735023648826039712272, 9.397529289028950408330502653531, 9.769174214227922185839992031918, 10.44394703519454479390961041763, 10.85739241904669680892210353223, 11.66192988503986676094214094391