Properties

Label 4-350e2-1.1-c3e2-0-4
Degree $4$
Conductor $122500$
Sign $1$
Analytic cond. $426.450$
Root an. cond. $4.54430$
Motivic weight $3$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·2-s − 3-s + 2·6-s + 20·7-s + 8·8-s + 27·9-s − 35·11-s − 132·13-s − 40·14-s − 16·16-s + 59·17-s − 54·18-s − 137·19-s − 20·21-s + 70·22-s − 7·23-s − 8·24-s + 264·26-s − 80·27-s + 212·29-s − 75·31-s + 35·33-s − 118·34-s + 11·37-s + 274·38-s + 132·39-s − 996·41-s + ⋯
L(s)  = 1  − 0.707·2-s − 0.192·3-s + 0.136·6-s + 1.07·7-s + 0.353·8-s + 9-s − 0.959·11-s − 2.81·13-s − 0.763·14-s − 1/4·16-s + 0.841·17-s − 0.707·18-s − 1.65·19-s − 0.207·21-s + 0.678·22-s − 0.0634·23-s − 0.0680·24-s + 1.99·26-s − 0.570·27-s + 1.35·29-s − 0.434·31-s + 0.184·33-s − 0.595·34-s + 0.0488·37-s + 1.16·38-s + 0.541·39-s − 3.79·41-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 122500 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 122500 ^{s/2} \, \Gamma_{\C}(s+3/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(122500\)    =    \(2^{2} \cdot 5^{4} \cdot 7^{2}\)
Sign: $1$
Analytic conductor: \(426.450\)
Root analytic conductor: \(4.54430\)
Motivic weight: \(3\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 122500,\ (\ :3/2, 3/2),\ 1)\)

Particular Values

\(L(2)\) \(\approx\) \(0.1476574765\)
\(L(\frac12)\) \(\approx\) \(0.1476574765\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2$C_2$ \( 1 + p T + p^{2} T^{2} \)
5 \( 1 \)
7$C_2$ \( 1 - 20 T + p^{3} T^{2} \)
good3$C_2^2$ \( 1 + T - 26 T^{2} + p^{3} T^{3} + p^{6} T^{4} \)
11$C_2^2$ \( 1 + 35 T - 106 T^{2} + 35 p^{3} T^{3} + p^{6} T^{4} \)
13$C_2$ \( ( 1 + 66 T + p^{3} T^{2} )^{2} \)
17$C_2^2$ \( 1 - 59 T - 1432 T^{2} - 59 p^{3} T^{3} + p^{6} T^{4} \)
19$C_2^2$ \( 1 + 137 T + 11910 T^{2} + 137 p^{3} T^{3} + p^{6} T^{4} \)
23$C_2^2$ \( 1 + 7 T - 12118 T^{2} + 7 p^{3} T^{3} + p^{6} T^{4} \)
29$C_2$ \( ( 1 - 106 T + p^{3} T^{2} )^{2} \)
31$C_2^2$ \( 1 + 75 T - 24166 T^{2} + 75 p^{3} T^{3} + p^{6} T^{4} \)
37$C_2^2$ \( 1 - 11 T - 50532 T^{2} - 11 p^{3} T^{3} + p^{6} T^{4} \)
41$C_2$ \( ( 1 + 498 T + p^{3} T^{2} )^{2} \)
43$C_2$ \( ( 1 + 260 T + p^{3} T^{2} )^{2} \)
47$C_2^2$ \( 1 + 171 T - 74582 T^{2} + 171 p^{3} T^{3} + p^{6} T^{4} \)
53$C_2^2$ \( 1 + 417 T + 25012 T^{2} + 417 p^{3} T^{3} + p^{6} T^{4} \)
59$C_2^2$ \( 1 - 17 T - 205090 T^{2} - 17 p^{3} T^{3} + p^{6} T^{4} \)
61$C_2^2$ \( 1 + 51 T - 224380 T^{2} + 51 p^{3} T^{3} + p^{6} T^{4} \)
67$C_2^2$ \( 1 - 439 T - 108042 T^{2} - 439 p^{3} T^{3} + p^{6} T^{4} \)
71$C_2$ \( ( 1 + 784 T + p^{3} T^{2} )^{2} \)
73$C_2^2$ \( 1 - 295 T - 301992 T^{2} - 295 p^{3} T^{3} + p^{6} T^{4} \)
79$C_2^2$ \( 1 - 495 T - 248014 T^{2} - 495 p^{3} T^{3} + p^{6} T^{4} \)
83$C_2$ \( ( 1 + 932 T + p^{3} T^{2} )^{2} \)
89$C_2^2$ \( 1 - 873 T + 57160 T^{2} - 873 p^{3} T^{3} + p^{6} T^{4} \)
97$C_2$ \( ( 1 - 290 T + p^{3} T^{2} )^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−11.44499634760613249600918936028, −10.41816610053329578691005083906, −10.27313561511752907770263618492, −10.00372359237019322727147659437, −9.780593995027672180449217878621, −8.782262332110583015717920623212, −8.530726450427554341367043069230, −7.84131566100644516096246478486, −7.77771793735576789885569481978, −6.93693587096006716564788222343, −6.92218878783427357446642331818, −5.96494565749609450939243639067, −4.96023506311919722308434974509, −4.81390782737162006274418269089, −4.77837759845928790766213766283, −3.60052821760592070351233374361, −2.75248657316652977619590646714, −1.92961064648979968451739817522, −1.58885509511434552720671401737, −0.14923568357506035820431349329, 0.14923568357506035820431349329, 1.58885509511434552720671401737, 1.92961064648979968451739817522, 2.75248657316652977619590646714, 3.60052821760592070351233374361, 4.77837759845928790766213766283, 4.81390782737162006274418269089, 4.96023506311919722308434974509, 5.96494565749609450939243639067, 6.92218878783427357446642331818, 6.93693587096006716564788222343, 7.77771793735576789885569481978, 7.84131566100644516096246478486, 8.530726450427554341367043069230, 8.782262332110583015717920623212, 9.780593995027672180449217878621, 10.00372359237019322727147659437, 10.27313561511752907770263618492, 10.41816610053329578691005083906, 11.44499634760613249600918936028

Graph of the $Z$-function along the critical line