L(s) = 1 | − 2·2-s − 3-s + 2·6-s + 20·7-s + 8·8-s + 27·9-s − 35·11-s − 132·13-s − 40·14-s − 16·16-s + 59·17-s − 54·18-s − 137·19-s − 20·21-s + 70·22-s − 7·23-s − 8·24-s + 264·26-s − 80·27-s + 212·29-s − 75·31-s + 35·33-s − 118·34-s + 11·37-s + 274·38-s + 132·39-s − 996·41-s + ⋯ |
L(s) = 1 | − 0.707·2-s − 0.192·3-s + 0.136·6-s + 1.07·7-s + 0.353·8-s + 9-s − 0.959·11-s − 2.81·13-s − 0.763·14-s − 1/4·16-s + 0.841·17-s − 0.707·18-s − 1.65·19-s − 0.207·21-s + 0.678·22-s − 0.0634·23-s − 0.0680·24-s + 1.99·26-s − 0.570·27-s + 1.35·29-s − 0.434·31-s + 0.184·33-s − 0.595·34-s + 0.0488·37-s + 1.16·38-s + 0.541·39-s − 3.79·41-s + ⋯ |
Λ(s)=(=(122500s/2ΓC(s)2L(s)Λ(4−s)
Λ(s)=(=(122500s/2ΓC(s+3/2)2L(s)Λ(1−s)
Degree: |
4 |
Conductor: |
122500
= 22⋅54⋅72
|
Sign: |
1
|
Analytic conductor: |
426.450 |
Root analytic conductor: |
4.54430 |
Motivic weight: |
3 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(4, 122500, ( :3/2,3/2), 1)
|
Particular Values
L(2) |
≈ |
0.1476574765 |
L(21) |
≈ |
0.1476574765 |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | C2 | 1+pT+p2T2 |
| 5 | | 1 |
| 7 | C2 | 1−20T+p3T2 |
good | 3 | C22 | 1+T−26T2+p3T3+p6T4 |
| 11 | C22 | 1+35T−106T2+35p3T3+p6T4 |
| 13 | C2 | (1+66T+p3T2)2 |
| 17 | C22 | 1−59T−1432T2−59p3T3+p6T4 |
| 19 | C22 | 1+137T+11910T2+137p3T3+p6T4 |
| 23 | C22 | 1+7T−12118T2+7p3T3+p6T4 |
| 29 | C2 | (1−106T+p3T2)2 |
| 31 | C22 | 1+75T−24166T2+75p3T3+p6T4 |
| 37 | C22 | 1−11T−50532T2−11p3T3+p6T4 |
| 41 | C2 | (1+498T+p3T2)2 |
| 43 | C2 | (1+260T+p3T2)2 |
| 47 | C22 | 1+171T−74582T2+171p3T3+p6T4 |
| 53 | C22 | 1+417T+25012T2+417p3T3+p6T4 |
| 59 | C22 | 1−17T−205090T2−17p3T3+p6T4 |
| 61 | C22 | 1+51T−224380T2+51p3T3+p6T4 |
| 67 | C22 | 1−439T−108042T2−439p3T3+p6T4 |
| 71 | C2 | (1+784T+p3T2)2 |
| 73 | C22 | 1−295T−301992T2−295p3T3+p6T4 |
| 79 | C22 | 1−495T−248014T2−495p3T3+p6T4 |
| 83 | C2 | (1+932T+p3T2)2 |
| 89 | C22 | 1−873T+57160T2−873p3T3+p6T4 |
| 97 | C2 | (1−290T+p3T2)2 |
show more | | |
show less | | |
L(s)=p∏ j=1∏4(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.44499634760613249600918936028, −10.41816610053329578691005083906, −10.27313561511752907770263618492, −10.00372359237019322727147659437, −9.780593995027672180449217878621, −8.782262332110583015717920623212, −8.530726450427554341367043069230, −7.84131566100644516096246478486, −7.77771793735576789885569481978, −6.93693587096006716564788222343, −6.92218878783427357446642331818, −5.96494565749609450939243639067, −4.96023506311919722308434974509, −4.81390782737162006274418269089, −4.77837759845928790766213766283, −3.60052821760592070351233374361, −2.75248657316652977619590646714, −1.92961064648979968451739817522, −1.58885509511434552720671401737, −0.14923568357506035820431349329,
0.14923568357506035820431349329, 1.58885509511434552720671401737, 1.92961064648979968451739817522, 2.75248657316652977619590646714, 3.60052821760592070351233374361, 4.77837759845928790766213766283, 4.81390782737162006274418269089, 4.96023506311919722308434974509, 5.96494565749609450939243639067, 6.92218878783427357446642331818, 6.93693587096006716564788222343, 7.77771793735576789885569481978, 7.84131566100644516096246478486, 8.530726450427554341367043069230, 8.782262332110583015717920623212, 9.780593995027672180449217878621, 10.00372359237019322727147659437, 10.27313561511752907770263618492, 10.41816610053329578691005083906, 11.44499634760613249600918936028