L(s) = 1 | − 2-s − 3-s − 2·5-s + 6-s + 8-s + 2·10-s − 2·13-s + 2·15-s − 16-s + 19-s − 2·23-s − 24-s + 25-s + 2·26-s + 27-s − 2·30-s − 38-s + 2·39-s − 2·40-s + 2·46-s + 48-s − 50-s − 54-s − 57-s − 2·59-s + 61-s + 64-s + ⋯ |
L(s) = 1 | − 2-s − 3-s − 2·5-s + 6-s + 8-s + 2·10-s − 2·13-s + 2·15-s − 16-s + 19-s − 2·23-s − 24-s + 25-s + 2·26-s + 27-s − 2·30-s − 38-s + 2·39-s − 2·40-s + 2·46-s + 48-s − 50-s − 54-s − 57-s − 2·59-s + 61-s + 64-s + ⋯ |
Λ(s)=(=(12446784s/2ΓC(s)2L(s)Λ(1−s)
Λ(s)=(=(12446784s/2ΓC(s)2L(s)Λ(1−s)
Degree: |
4 |
Conductor: |
12446784
= 26⋅34⋅74
|
Sign: |
1
|
Analytic conductor: |
3.10006 |
Root analytic conductor: |
1.32691 |
Motivic weight: |
0 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(4, 12446784, ( :0,0), 1)
|
Particular Values
L(21) |
≈ |
0.0008032382988 |
L(21) |
≈ |
0.0008032382988 |
L(1) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | C2 | 1+T+T2 |
| 3 | C2 | 1+T+T2 |
| 7 | | 1 |
good | 5 | C2 | (1+T+T2)2 |
| 11 | C1×C1 | (1−T)2(1+T)2 |
| 13 | C2 | (1+T+T2)2 |
| 17 | C2 | (1−T+T2)(1+T+T2) |
| 19 | C1×C2 | (1−T)2(1+T+T2) |
| 23 | C2 | (1+T+T2)2 |
| 29 | C2 | (1−T+T2)(1+T+T2) |
| 31 | C2 | (1−T+T2)(1+T+T2) |
| 37 | C2 | (1−T+T2)(1+T+T2) |
| 41 | C2 | (1−T+T2)(1+T+T2) |
| 43 | C2 | (1−T+T2)(1+T+T2) |
| 47 | C2 | (1−T+T2)(1+T+T2) |
| 53 | C2 | (1−T+T2)(1+T+T2) |
| 59 | C2 | (1+T+T2)2 |
| 61 | C1×C2 | (1−T)2(1+T+T2) |
| 67 | C2 | (1−T+T2)(1+T+T2) |
| 71 | C2 | (1+T+T2)2 |
| 73 | C2 | (1−T+T2)(1+T+T2) |
| 79 | C1×C2 | (1−T)2(1+T+T2) |
| 83 | C2 | (1+T+T2)2 |
| 89 | C2 | (1−T+T2)(1+T+T2) |
| 97 | C2 | (1−T+T2)(1+T+T2) |
show more | | |
show less | | |
L(s)=p∏ j=1∏4(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.678823072014999364670049501212, −8.605852893270088321251759999521, −8.018444713588179514722949124677, −7.88107479113781708540118643740, −7.56205853281525838035978625803, −7.19759269325710739546937599720, −7.05192716179111697690513014297, −6.44611536824688367775281278041, −5.77551784126851747780892134716, −5.71654111896407470516932760850, −5.01650576265853764239350981387, −4.74157142594756227394563381850, −4.31062343527203027913334724230, −4.12842748159661787608799036502, −3.50890274371951980866263204186, −3.04963581831301415464755874808, −2.42539684432091705781786939488, −1.83147568710794522010079156713, −1.03978766618099246977404762834, −0.02515613220077678073874183418,
0.02515613220077678073874183418, 1.03978766618099246977404762834, 1.83147568710794522010079156713, 2.42539684432091705781786939488, 3.04963581831301415464755874808, 3.50890274371951980866263204186, 4.12842748159661787608799036502, 4.31062343527203027913334724230, 4.74157142594756227394563381850, 5.01650576265853764239350981387, 5.71654111896407470516932760850, 5.77551784126851747780892134716, 6.44611536824688367775281278041, 7.05192716179111697690513014297, 7.19759269325710739546937599720, 7.56205853281525838035978625803, 7.88107479113781708540118643740, 8.018444713588179514722949124677, 8.605852893270088321251759999521, 8.678823072014999364670049501212