Properties

Label 4-3528e2-1.1-c0e2-0-0
Degree $4$
Conductor $12446784$
Sign $1$
Analytic cond. $3.10006$
Root an. cond. $1.32691$
Motivic weight $0$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s − 3-s − 2·5-s + 6-s + 8-s + 2·10-s − 2·13-s + 2·15-s − 16-s + 19-s − 2·23-s − 24-s + 25-s + 2·26-s + 27-s − 2·30-s − 38-s + 2·39-s − 2·40-s + 2·46-s + 48-s − 50-s − 54-s − 57-s − 2·59-s + 61-s + 64-s + ⋯
L(s)  = 1  − 2-s − 3-s − 2·5-s + 6-s + 8-s + 2·10-s − 2·13-s + 2·15-s − 16-s + 19-s − 2·23-s − 24-s + 25-s + 2·26-s + 27-s − 2·30-s − 38-s + 2·39-s − 2·40-s + 2·46-s + 48-s − 50-s − 54-s − 57-s − 2·59-s + 61-s + 64-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 12446784 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 12446784 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(12446784\)    =    \(2^{6} \cdot 3^{4} \cdot 7^{4}\)
Sign: $1$
Analytic conductor: \(3.10006\)
Root analytic conductor: \(1.32691\)
Motivic weight: \(0\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 12446784,\ (\ :0, 0),\ 1)\)

Particular Values

\(L(\frac{1}{2})\) \(\approx\) \(0.0008032382988\)
\(L(\frac12)\) \(\approx\) \(0.0008032382988\)
\(L(1)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2$C_2$ \( 1 + T + T^{2} \)
3$C_2$ \( 1 + T + T^{2} \)
7 \( 1 \)
good5$C_2$ \( ( 1 + T + T^{2} )^{2} \)
11$C_1$$\times$$C_1$ \( ( 1 - T )^{2}( 1 + T )^{2} \)
13$C_2$ \( ( 1 + T + T^{2} )^{2} \)
17$C_2$ \( ( 1 - T + T^{2} )( 1 + T + T^{2} ) \)
19$C_1$$\times$$C_2$ \( ( 1 - T )^{2}( 1 + T + T^{2} ) \)
23$C_2$ \( ( 1 + T + T^{2} )^{2} \)
29$C_2$ \( ( 1 - T + T^{2} )( 1 + T + T^{2} ) \)
31$C_2$ \( ( 1 - T + T^{2} )( 1 + T + T^{2} ) \)
37$C_2$ \( ( 1 - T + T^{2} )( 1 + T + T^{2} ) \)
41$C_2$ \( ( 1 - T + T^{2} )( 1 + T + T^{2} ) \)
43$C_2$ \( ( 1 - T + T^{2} )( 1 + T + T^{2} ) \)
47$C_2$ \( ( 1 - T + T^{2} )( 1 + T + T^{2} ) \)
53$C_2$ \( ( 1 - T + T^{2} )( 1 + T + T^{2} ) \)
59$C_2$ \( ( 1 + T + T^{2} )^{2} \)
61$C_1$$\times$$C_2$ \( ( 1 - T )^{2}( 1 + T + T^{2} ) \)
67$C_2$ \( ( 1 - T + T^{2} )( 1 + T + T^{2} ) \)
71$C_2$ \( ( 1 + T + T^{2} )^{2} \)
73$C_2$ \( ( 1 - T + T^{2} )( 1 + T + T^{2} ) \)
79$C_1$$\times$$C_2$ \( ( 1 - T )^{2}( 1 + T + T^{2} ) \)
83$C_2$ \( ( 1 + T + T^{2} )^{2} \)
89$C_2$ \( ( 1 - T + T^{2} )( 1 + T + T^{2} ) \)
97$C_2$ \( ( 1 - T + T^{2} )( 1 + T + T^{2} ) \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.678823072014999364670049501212, −8.605852893270088321251759999521, −8.018444713588179514722949124677, −7.88107479113781708540118643740, −7.56205853281525838035978625803, −7.19759269325710739546937599720, −7.05192716179111697690513014297, −6.44611536824688367775281278041, −5.77551784126851747780892134716, −5.71654111896407470516932760850, −5.01650576265853764239350981387, −4.74157142594756227394563381850, −4.31062343527203027913334724230, −4.12842748159661787608799036502, −3.50890274371951980866263204186, −3.04963581831301415464755874808, −2.42539684432091705781786939488, −1.83147568710794522010079156713, −1.03978766618099246977404762834, −0.02515613220077678073874183418, 0.02515613220077678073874183418, 1.03978766618099246977404762834, 1.83147568710794522010079156713, 2.42539684432091705781786939488, 3.04963581831301415464755874808, 3.50890274371951980866263204186, 4.12842748159661787608799036502, 4.31062343527203027913334724230, 4.74157142594756227394563381850, 5.01650576265853764239350981387, 5.71654111896407470516932760850, 5.77551784126851747780892134716, 6.44611536824688367775281278041, 7.05192716179111697690513014297, 7.19759269325710739546937599720, 7.56205853281525838035978625803, 7.88107479113781708540118643740, 8.018444713588179514722949124677, 8.605852893270088321251759999521, 8.678823072014999364670049501212

Graph of the $Z$-function along the critical line