Properties

Label 4-3528e2-1.1-c1e2-0-3
Degree $4$
Conductor $12446784$
Sign $1$
Analytic cond. $793.617$
Root an. cond. $5.30765$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·5-s + 2·11-s − 4·13-s − 6·17-s − 4·19-s + 6·23-s + 5·25-s − 4·31-s − 10·37-s + 4·41-s − 8·43-s − 4·47-s − 12·53-s − 4·55-s − 12·59-s + 6·61-s + 8·65-s + 4·67-s + 28·71-s − 2·73-s + 8·79-s − 32·83-s + 12·85-s + 6·89-s + 8·95-s + 36·97-s − 14·101-s + ⋯
L(s)  = 1  − 0.894·5-s + 0.603·11-s − 1.10·13-s − 1.45·17-s − 0.917·19-s + 1.25·23-s + 25-s − 0.718·31-s − 1.64·37-s + 0.624·41-s − 1.21·43-s − 0.583·47-s − 1.64·53-s − 0.539·55-s − 1.56·59-s + 0.768·61-s + 0.992·65-s + 0.488·67-s + 3.32·71-s − 0.234·73-s + 0.900·79-s − 3.51·83-s + 1.30·85-s + 0.635·89-s + 0.820·95-s + 3.65·97-s − 1.39·101-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 12446784 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 12446784 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(12446784\)    =    \(2^{6} \cdot 3^{4} \cdot 7^{4}\)
Sign: $1$
Analytic conductor: \(793.617\)
Root analytic conductor: \(5.30765\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 12446784,\ (\ :1/2, 1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(0.3090695749\)
\(L(\frac12)\) \(\approx\) \(0.3090695749\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
7 \( 1 \)
good5$C_2^2$ \( 1 + 2 T - T^{2} + 2 p T^{3} + p^{2} T^{4} \)
11$C_2^2$ \( 1 - 2 T - 7 T^{2} - 2 p T^{3} + p^{2} T^{4} \)
13$C_2$ \( ( 1 + 2 T + p T^{2} )^{2} \)
17$C_2^2$ \( 1 + 6 T + 19 T^{2} + 6 p T^{3} + p^{2} T^{4} \)
19$C_2^2$ \( 1 + 4 T - 3 T^{2} + 4 p T^{3} + p^{2} T^{4} \)
23$C_2^2$ \( 1 - 6 T + 13 T^{2} - 6 p T^{3} + p^{2} T^{4} \)
29$C_2$ \( ( 1 + p T^{2} )^{2} \)
31$C_2$ \( ( 1 - 7 T + p T^{2} )( 1 + 11 T + p T^{2} ) \)
37$C_2$ \( ( 1 - T + p T^{2} )( 1 + 11 T + p T^{2} ) \)
41$C_2$ \( ( 1 - 2 T + p T^{2} )^{2} \)
43$C_2$ \( ( 1 + 4 T + p T^{2} )^{2} \)
47$C_2^2$ \( 1 + 4 T - 31 T^{2} + 4 p T^{3} + p^{2} T^{4} \)
53$C_2^2$ \( 1 + 12 T + 91 T^{2} + 12 p T^{3} + p^{2} T^{4} \)
59$C_2^2$ \( 1 + 12 T + 85 T^{2} + 12 p T^{3} + p^{2} T^{4} \)
61$C_2^2$ \( 1 - 6 T - 25 T^{2} - 6 p T^{3} + p^{2} T^{4} \)
67$C_2^2$ \( 1 - 4 T - 51 T^{2} - 4 p T^{3} + p^{2} T^{4} \)
71$C_2$ \( ( 1 - 14 T + p T^{2} )^{2} \)
73$C_2^2$ \( 1 + 2 T - 69 T^{2} + 2 p T^{3} + p^{2} T^{4} \)
79$C_2^2$ \( 1 - 8 T - 15 T^{2} - 8 p T^{3} + p^{2} T^{4} \)
83$C_2$ \( ( 1 + 16 T + p T^{2} )^{2} \)
89$C_2^2$ \( 1 - 6 T - 53 T^{2} - 6 p T^{3} + p^{2} T^{4} \)
97$C_2$ \( ( 1 - 18 T + p T^{2} )^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.892532111206215314081814045533, −8.259823584698242129600574003328, −8.158978306695114281518236043958, −7.55504578972573212675448590662, −7.33250340666059212817064818339, −6.75487803874930213311765613616, −6.61089258524233622314130760797, −6.49051977246742497052624035502, −5.72059138298391011076206441038, −5.12040408277451557448104379783, −4.93856985383457531089945309857, −4.59953846223430251767407471453, −4.19561667137027706637369340172, −3.56393132338580887204049919605, −3.43227728945779337899918337910, −2.78608199452191970089853165671, −2.24915439229303985777566669068, −1.83716675895772120153222614565, −1.13150254014342935058229240718, −0.17587506248643707713497789691, 0.17587506248643707713497789691, 1.13150254014342935058229240718, 1.83716675895772120153222614565, 2.24915439229303985777566669068, 2.78608199452191970089853165671, 3.43227728945779337899918337910, 3.56393132338580887204049919605, 4.19561667137027706637369340172, 4.59953846223430251767407471453, 4.93856985383457531089945309857, 5.12040408277451557448104379783, 5.72059138298391011076206441038, 6.49051977246742497052624035502, 6.61089258524233622314130760797, 6.75487803874930213311765613616, 7.33250340666059212817064818339, 7.55504578972573212675448590662, 8.158978306695114281518236043958, 8.259823584698242129600574003328, 8.892532111206215314081814045533

Graph of the $Z$-function along the critical line