L(s) = 1 | − 2·5-s + 2·11-s − 4·13-s − 6·17-s − 4·19-s + 6·23-s + 5·25-s − 4·31-s − 10·37-s + 4·41-s − 8·43-s − 4·47-s − 12·53-s − 4·55-s − 12·59-s + 6·61-s + 8·65-s + 4·67-s + 28·71-s − 2·73-s + 8·79-s − 32·83-s + 12·85-s + 6·89-s + 8·95-s + 36·97-s − 14·101-s + ⋯ |
L(s) = 1 | − 0.894·5-s + 0.603·11-s − 1.10·13-s − 1.45·17-s − 0.917·19-s + 1.25·23-s + 25-s − 0.718·31-s − 1.64·37-s + 0.624·41-s − 1.21·43-s − 0.583·47-s − 1.64·53-s − 0.539·55-s − 1.56·59-s + 0.768·61-s + 0.992·65-s + 0.488·67-s + 3.32·71-s − 0.234·73-s + 0.900·79-s − 3.51·83-s + 1.30·85-s + 0.635·89-s + 0.820·95-s + 3.65·97-s − 1.39·101-s + ⋯ |
Λ(s)=(=(12446784s/2ΓC(s)2L(s)Λ(2−s)
Λ(s)=(=(12446784s/2ΓC(s+1/2)2L(s)Λ(1−s)
Degree: |
4 |
Conductor: |
12446784
= 26⋅34⋅74
|
Sign: |
1
|
Analytic conductor: |
793.617 |
Root analytic conductor: |
5.30765 |
Motivic weight: |
1 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(4, 12446784, ( :1/2,1/2), 1)
|
Particular Values
L(1) |
≈ |
0.3090695749 |
L(21) |
≈ |
0.3090695749 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | | 1 |
| 3 | | 1 |
| 7 | | 1 |
good | 5 | C22 | 1+2T−T2+2pT3+p2T4 |
| 11 | C22 | 1−2T−7T2−2pT3+p2T4 |
| 13 | C2 | (1+2T+pT2)2 |
| 17 | C22 | 1+6T+19T2+6pT3+p2T4 |
| 19 | C22 | 1+4T−3T2+4pT3+p2T4 |
| 23 | C22 | 1−6T+13T2−6pT3+p2T4 |
| 29 | C2 | (1+pT2)2 |
| 31 | C2 | (1−7T+pT2)(1+11T+pT2) |
| 37 | C2 | (1−T+pT2)(1+11T+pT2) |
| 41 | C2 | (1−2T+pT2)2 |
| 43 | C2 | (1+4T+pT2)2 |
| 47 | C22 | 1+4T−31T2+4pT3+p2T4 |
| 53 | C22 | 1+12T+91T2+12pT3+p2T4 |
| 59 | C22 | 1+12T+85T2+12pT3+p2T4 |
| 61 | C22 | 1−6T−25T2−6pT3+p2T4 |
| 67 | C22 | 1−4T−51T2−4pT3+p2T4 |
| 71 | C2 | (1−14T+pT2)2 |
| 73 | C22 | 1+2T−69T2+2pT3+p2T4 |
| 79 | C22 | 1−8T−15T2−8pT3+p2T4 |
| 83 | C2 | (1+16T+pT2)2 |
| 89 | C22 | 1−6T−53T2−6pT3+p2T4 |
| 97 | C2 | (1−18T+pT2)2 |
show more | | |
show less | | |
L(s)=p∏ j=1∏4(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.892532111206215314081814045533, −8.259823584698242129600574003328, −8.158978306695114281518236043958, −7.55504578972573212675448590662, −7.33250340666059212817064818339, −6.75487803874930213311765613616, −6.61089258524233622314130760797, −6.49051977246742497052624035502, −5.72059138298391011076206441038, −5.12040408277451557448104379783, −4.93856985383457531089945309857, −4.59953846223430251767407471453, −4.19561667137027706637369340172, −3.56393132338580887204049919605, −3.43227728945779337899918337910, −2.78608199452191970089853165671, −2.24915439229303985777566669068, −1.83716675895772120153222614565, −1.13150254014342935058229240718, −0.17587506248643707713497789691,
0.17587506248643707713497789691, 1.13150254014342935058229240718, 1.83716675895772120153222614565, 2.24915439229303985777566669068, 2.78608199452191970089853165671, 3.43227728945779337899918337910, 3.56393132338580887204049919605, 4.19561667137027706637369340172, 4.59953846223430251767407471453, 4.93856985383457531089945309857, 5.12040408277451557448104379783, 5.72059138298391011076206441038, 6.49051977246742497052624035502, 6.61089258524233622314130760797, 6.75487803874930213311765613616, 7.33250340666059212817064818339, 7.55504578972573212675448590662, 8.158978306695114281518236043958, 8.259823584698242129600574003328, 8.892532111206215314081814045533