L(s) = 1 | − 5-s + 11-s − 5·13-s − 8·17-s + 5·19-s − 8·23-s + 5·25-s − 3·29-s + 2·31-s + 3·37-s + 6·41-s − 7·43-s − 12·47-s − 11·53-s − 55-s + 5·59-s − 20·61-s + 5·65-s + 7·67-s − 4·71-s + 73-s + 8·79-s + 7·83-s + 8·85-s − 6·89-s − 5·95-s − 25·97-s + ⋯ |
L(s) = 1 | − 0.447·5-s + 0.301·11-s − 1.38·13-s − 1.94·17-s + 1.14·19-s − 1.66·23-s + 25-s − 0.557·29-s + 0.359·31-s + 0.493·37-s + 0.937·41-s − 1.06·43-s − 1.75·47-s − 1.51·53-s − 0.134·55-s + 0.650·59-s − 2.56·61-s + 0.620·65-s + 0.855·67-s − 0.474·71-s + 0.117·73-s + 0.900·79-s + 0.768·83-s + 0.867·85-s − 0.635·89-s − 0.512·95-s − 2.53·97-s + ⋯ |
Λ(s)=(=(12446784s/2ΓC(s)2L(s)Λ(2−s)
Λ(s)=(=(12446784s/2ΓC(s+1/2)2L(s)Λ(1−s)
Degree: |
4 |
Conductor: |
12446784
= 26⋅34⋅74
|
Sign: |
1
|
Analytic conductor: |
793.617 |
Root analytic conductor: |
5.30765 |
Motivic weight: |
1 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
2
|
Selberg data: |
(4, 12446784, ( :1/2,1/2), 1)
|
Particular Values
L(1) |
= |
0 |
L(21) |
= |
0 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | | 1 |
| 3 | | 1 |
| 7 | | 1 |
good | 5 | C22 | 1+T−4T2+pT3+p2T4 |
| 11 | D4 | 1−T+8T2−pT3+p2T4 |
| 13 | D4 | 1+5T+18T2+5pT3+p2T4 |
| 17 | C2 | (1+4T+pT2)2 |
| 19 | D4 | 1−5T+30T2−5pT3+p2T4 |
| 23 | C2 | (1+4T+pT2)2 |
| 29 | D4 | 1+3T+46T2+3pT3+p2T4 |
| 31 | C2 | (1−T+pT2)2 |
| 37 | D4 | 1−3T+62T2−3pT3+p2T4 |
| 41 | D4 | 1−6T+34T2−6pT3+p2T4 |
| 43 | D4 | 1+7T+84T2+7pT3+p2T4 |
| 47 | C2 | (1+6T+pT2)2 |
| 53 | D4 | 1+11T+122T2+11pT3+p2T4 |
| 59 | D4 | 1−5T+110T2−5pT3+p2T4 |
| 61 | C2 | (1+10T+pT2)2 |
| 67 | D4 | 1−7T+132T2−7pT3+p2T4 |
| 71 | C2 | (1+2T+pT2)2 |
| 73 | D4 | 1−T+132T2−pT3+p2T4 |
| 79 | D4 | 1−8T+117T2−8pT3+p2T4 |
| 83 | D4 | 1−7T+164T2−7pT3+p2T4 |
| 89 | D4 | 1+6T+130T2+6pT3+p2T4 |
| 97 | D4 | 1+25T+336T2+25pT3+p2T4 |
show more | | |
show less | | |
L(s)=p∏ j=1∏4(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.199437375520808117057045065771, −8.106745005014989322563050040664, −7.56084715494105884112333032060, −7.45301541763017165200606598950, −6.71654288310414967634349763150, −6.70073632245401744492253588366, −6.23841162056677075120995915228, −5.83356918575981281550840563833, −5.18995316409897141238366334982, −4.85544098925798401277104215023, −4.67468365657476875553358733735, −4.12216009244573645365194056071, −3.78813135785413988787015943187, −3.21602223139018640327563799336, −2.70025665596136581460930474397, −2.38853213020453115209962611679, −1.74294431929387312457142758629, −1.23834149436161297774796709499, 0, 0,
1.23834149436161297774796709499, 1.74294431929387312457142758629, 2.38853213020453115209962611679, 2.70025665596136581460930474397, 3.21602223139018640327563799336, 3.78813135785413988787015943187, 4.12216009244573645365194056071, 4.67468365657476875553358733735, 4.85544098925798401277104215023, 5.18995316409897141238366334982, 5.83356918575981281550840563833, 6.23841162056677075120995915228, 6.70073632245401744492253588366, 6.71654288310414967634349763150, 7.45301541763017165200606598950, 7.56084715494105884112333032060, 8.106745005014989322563050040664, 8.199437375520808117057045065771