L(s) = 1 | − 5-s + 11-s − 5·13-s − 8·17-s + 5·19-s − 8·23-s + 5·25-s − 3·29-s + 2·31-s + 3·37-s + 6·41-s − 7·43-s − 12·47-s − 11·53-s − 55-s + 5·59-s − 20·61-s + 5·65-s + 7·67-s − 4·71-s + 73-s + 8·79-s + 7·83-s + 8·85-s − 6·89-s − 5·95-s − 25·97-s + ⋯ |
L(s) = 1 | − 0.447·5-s + 0.301·11-s − 1.38·13-s − 1.94·17-s + 1.14·19-s − 1.66·23-s + 25-s − 0.557·29-s + 0.359·31-s + 0.493·37-s + 0.937·41-s − 1.06·43-s − 1.75·47-s − 1.51·53-s − 0.134·55-s + 0.650·59-s − 2.56·61-s + 0.620·65-s + 0.855·67-s − 0.474·71-s + 0.117·73-s + 0.900·79-s + 0.768·83-s + 0.867·85-s − 0.635·89-s − 0.512·95-s − 2.53·97-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 12446784 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 12446784 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(=\) |
\(0\) |
\(L(\frac12)\) |
\(=\) |
\(0\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $\Gal(F_p)$ | $F_p(T)$ |
---|
bad | 2 | | \( 1 \) |
| 3 | | \( 1 \) |
| 7 | | \( 1 \) |
good | 5 | $C_2^2$ | \( 1 + T - 4 T^{2} + p T^{3} + p^{2} T^{4} \) |
| 11 | $D_{4}$ | \( 1 - T + 8 T^{2} - p T^{3} + p^{2} T^{4} \) |
| 13 | $D_{4}$ | \( 1 + 5 T + 18 T^{2} + 5 p T^{3} + p^{2} T^{4} \) |
| 17 | $C_2$ | \( ( 1 + 4 T + p T^{2} )^{2} \) |
| 19 | $D_{4}$ | \( 1 - 5 T + 30 T^{2} - 5 p T^{3} + p^{2} T^{4} \) |
| 23 | $C_2$ | \( ( 1 + 4 T + p T^{2} )^{2} \) |
| 29 | $D_{4}$ | \( 1 + 3 T + 46 T^{2} + 3 p T^{3} + p^{2} T^{4} \) |
| 31 | $C_2$ | \( ( 1 - T + p T^{2} )^{2} \) |
| 37 | $D_{4}$ | \( 1 - 3 T + 62 T^{2} - 3 p T^{3} + p^{2} T^{4} \) |
| 41 | $D_{4}$ | \( 1 - 6 T + 34 T^{2} - 6 p T^{3} + p^{2} T^{4} \) |
| 43 | $D_{4}$ | \( 1 + 7 T + 84 T^{2} + 7 p T^{3} + p^{2} T^{4} \) |
| 47 | $C_2$ | \( ( 1 + 6 T + p T^{2} )^{2} \) |
| 53 | $D_{4}$ | \( 1 + 11 T + 122 T^{2} + 11 p T^{3} + p^{2} T^{4} \) |
| 59 | $D_{4}$ | \( 1 - 5 T + 110 T^{2} - 5 p T^{3} + p^{2} T^{4} \) |
| 61 | $C_2$ | \( ( 1 + 10 T + p T^{2} )^{2} \) |
| 67 | $D_{4}$ | \( 1 - 7 T + 132 T^{2} - 7 p T^{3} + p^{2} T^{4} \) |
| 71 | $C_2$ | \( ( 1 + 2 T + p T^{2} )^{2} \) |
| 73 | $D_{4}$ | \( 1 - T + 132 T^{2} - p T^{3} + p^{2} T^{4} \) |
| 79 | $D_{4}$ | \( 1 - 8 T + 117 T^{2} - 8 p T^{3} + p^{2} T^{4} \) |
| 83 | $D_{4}$ | \( 1 - 7 T + 164 T^{2} - 7 p T^{3} + p^{2} T^{4} \) |
| 89 | $D_{4}$ | \( 1 + 6 T + 130 T^{2} + 6 p T^{3} + p^{2} T^{4} \) |
| 97 | $D_{4}$ | \( 1 + 25 T + 336 T^{2} + 25 p T^{3} + p^{2} T^{4} \) |
show more | | |
show less | | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.199437375520808117057045065771, −8.106745005014989322563050040664, −7.56084715494105884112333032060, −7.45301541763017165200606598950, −6.71654288310414967634349763150, −6.70073632245401744492253588366, −6.23841162056677075120995915228, −5.83356918575981281550840563833, −5.18995316409897141238366334982, −4.85544098925798401277104215023, −4.67468365657476875553358733735, −4.12216009244573645365194056071, −3.78813135785413988787015943187, −3.21602223139018640327563799336, −2.70025665596136581460930474397, −2.38853213020453115209962611679, −1.74294431929387312457142758629, −1.23834149436161297774796709499, 0, 0,
1.23834149436161297774796709499, 1.74294431929387312457142758629, 2.38853213020453115209962611679, 2.70025665596136581460930474397, 3.21602223139018640327563799336, 3.78813135785413988787015943187, 4.12216009244573645365194056071, 4.67468365657476875553358733735, 4.85544098925798401277104215023, 5.18995316409897141238366334982, 5.83356918575981281550840563833, 6.23841162056677075120995915228, 6.70073632245401744492253588366, 6.71654288310414967634349763150, 7.45301541763017165200606598950, 7.56084715494105884112333032060, 8.106745005014989322563050040664, 8.199437375520808117057045065771