Properties

Label 4-360e2-1.1-c1e2-0-22
Degree $4$
Conductor $129600$
Sign $1$
Analytic cond. $8.26340$
Root an. cond. $1.69546$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2·3-s − 2·4-s + 3·5-s + 9-s − 4·12-s − 13-s + 6·15-s + 4·16-s − 6·20-s + 4·25-s − 4·27-s − 8·31-s − 2·36-s + 14·37-s − 2·39-s + 6·41-s + 14·43-s + 3·45-s + 8·48-s + 5·49-s + 2·52-s + 18·53-s − 12·60-s − 8·64-s − 3·65-s − 10·67-s − 6·71-s + ⋯
L(s)  = 1  + 1.15·3-s − 4-s + 1.34·5-s + 1/3·9-s − 1.15·12-s − 0.277·13-s + 1.54·15-s + 16-s − 1.34·20-s + 4/5·25-s − 0.769·27-s − 1.43·31-s − 1/3·36-s + 2.30·37-s − 0.320·39-s + 0.937·41-s + 2.13·43-s + 0.447·45-s + 1.15·48-s + 5/7·49-s + 0.277·52-s + 2.47·53-s − 1.54·60-s − 64-s − 0.372·65-s − 1.22·67-s − 0.712·71-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 129600 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 129600 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(129600\)    =    \(2^{6} \cdot 3^{4} \cdot 5^{2}\)
Sign: $1$
Analytic conductor: \(8.26340\)
Root analytic conductor: \(1.69546\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 129600,\ (\ :1/2, 1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(2.350598574\)
\(L(\frac12)\) \(\approx\) \(2.350598574\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2$C_2$ \( 1 + p T^{2} \)
3$C_2$ \( 1 - 2 T + p T^{2} \)
5$C_2$ \( 1 - 3 T + p T^{2} \)
good7$C_2^2$ \( 1 - 5 T^{2} + p^{2} T^{4} \)
11$C_2^2$ \( 1 - 2 T^{2} + p^{2} T^{4} \)
13$C_2$$\times$$C_2$ \( ( 1 - T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
17$C_2^2$ \( 1 - 23 T^{2} + p^{2} T^{4} \)
19$C_2^2$ \( 1 + 7 T^{2} + p^{2} T^{4} \)
23$C_2^2$ \( 1 + 31 T^{2} + p^{2} T^{4} \)
29$C_2^2$ \( 1 + T^{2} + p^{2} T^{4} \)
31$C_2$$\times$$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 10 T + p T^{2} ) \)
37$C_2$ \( ( 1 - 7 T + p T^{2} )^{2} \)
41$C_2$$\times$$C_2$ \( ( 1 - 9 T + p T^{2} )( 1 + 3 T + p T^{2} ) \)
43$C_2$$\times$$C_2$ \( ( 1 - 10 T + p T^{2} )( 1 - 4 T + p T^{2} ) \)
47$C_2^2$ \( 1 - 5 T^{2} + p^{2} T^{4} \)
53$C_2$ \( ( 1 - 9 T + p T^{2} )^{2} \)
59$C_2^2$ \( 1 + 55 T^{2} + p^{2} T^{4} \)
61$C_2^2$ \( 1 - 23 T^{2} + p^{2} T^{4} \)
67$C_2$$\times$$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 14 T + p T^{2} ) \)
71$C_2$$\times$$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 12 T + p T^{2} ) \)
73$C_2^2$ \( 1 + 61 T^{2} + p^{2} T^{4} \)
79$C_2$$\times$$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
83$C_2$$\times$$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + p T^{2} ) \)
89$C_2$ \( ( 1 - 9 T + p T^{2} )^{2} \)
97$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + 8 T + p T^{2} ) \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.295455792544398235160794241855, −8.945278920230843320013949158476, −8.753475712992221271614078033529, −7.898917725872179517304083979808, −7.59970265412245632585978712072, −7.16053885305706772719092680227, −6.07144536313874732883591372241, −5.90088707643617630662279975277, −5.41223711946382281300473715397, −4.63429937210472043173403028075, −4.06298243951686871869876247721, −3.52719580513896865585186872763, −2.49374780566361831163582074504, −2.35694998327777122741685618488, −1.09218051133920291771885075771, 1.09218051133920291771885075771, 2.35694998327777122741685618488, 2.49374780566361831163582074504, 3.52719580513896865585186872763, 4.06298243951686871869876247721, 4.63429937210472043173403028075, 5.41223711946382281300473715397, 5.90088707643617630662279975277, 6.07144536313874732883591372241, 7.16053885305706772719092680227, 7.59970265412245632585978712072, 7.898917725872179517304083979808, 8.753475712992221271614078033529, 8.945278920230843320013949158476, 9.295455792544398235160794241855

Graph of the $Z$-function along the critical line