L(s) = 1 | + 4·7-s + 8·13-s + 8·19-s + 25-s + 8·31-s − 16·43-s − 2·49-s − 28·61-s − 8·67-s + 12·73-s − 24·79-s + 32·91-s − 28·97-s − 28·103-s + 4·109-s − 18·121-s + 127-s + 131-s + 32·133-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + 167-s + 22·169-s + ⋯ |
L(s) = 1 | + 1.51·7-s + 2.21·13-s + 1.83·19-s + 1/5·25-s + 1.43·31-s − 2.43·43-s − 2/7·49-s − 3.58·61-s − 0.977·67-s + 1.40·73-s − 2.70·79-s + 3.35·91-s − 2.84·97-s − 2.75·103-s + 0.383·109-s − 1.63·121-s + 0.0887·127-s + 0.0873·131-s + 2.77·133-s + 0.0854·137-s + 0.0848·139-s + 0.0819·149-s + 0.0813·151-s + 0.0798·157-s + 0.0783·163-s + 0.0773·167-s + 1.69·169-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 129600 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 129600 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(2.250175564\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.250175564\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $\Gal(F_p)$ | $F_p(T)$ |
---|
bad | 2 | | \( 1 \) |
| 3 | | \( 1 \) |
| 5 | $C_1$$\times$$C_1$ | \( ( 1 - T )( 1 + T ) \) |
good | 7 | $C_2$ | \( ( 1 - 2 T + p T^{2} )^{2} \) |
| 11 | $C_2$ | \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \) |
| 13 | $C_2$ | \( ( 1 - 4 T + p T^{2} )^{2} \) |
| 17 | $C_2$ | \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \) |
| 19 | $C_2$ | \( ( 1 - 4 T + p T^{2} )^{2} \) |
| 23 | $C_2$ | \( ( 1 - 8 T + p T^{2} )( 1 + 8 T + p T^{2} ) \) |
| 29 | $C_2$ | \( ( 1 - 10 T + p T^{2} )( 1 + 10 T + p T^{2} ) \) |
| 31 | $C_2$ | \( ( 1 - 4 T + p T^{2} )^{2} \) |
| 37 | $C_2$ | \( ( 1 + p T^{2} )^{2} \) |
| 41 | $C_2$ | \( ( 1 + p T^{2} )^{2} \) |
| 43 | $C_2$ | \( ( 1 + 8 T + p T^{2} )^{2} \) |
| 47 | $C_2$ | \( ( 1 - 8 T + p T^{2} )( 1 + 8 T + p T^{2} ) \) |
| 53 | $C_2$ | \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \) |
| 59 | $C_2$ | \( ( 1 - 14 T + p T^{2} )( 1 + 14 T + p T^{2} ) \) |
| 61 | $C_2$ | \( ( 1 + 14 T + p T^{2} )^{2} \) |
| 67 | $C_2$ | \( ( 1 + 4 T + p T^{2} )^{2} \) |
| 71 | $C_2$ | \( ( 1 - 12 T + p T^{2} )( 1 + 12 T + p T^{2} ) \) |
| 73 | $C_2$ | \( ( 1 - 6 T + p T^{2} )^{2} \) |
| 79 | $C_2$ | \( ( 1 + 12 T + p T^{2} )^{2} \) |
| 83 | $C_2$ | \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \) |
| 89 | $C_2$ | \( ( 1 - 12 T + p T^{2} )( 1 + 12 T + p T^{2} ) \) |
| 97 | $C_2$ | \( ( 1 + 14 T + p T^{2} )^{2} \) |
show more | | |
show less | | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.419368133385122785233890515409, −8.687154242699380983384182548901, −8.430531363871330384753929024064, −7.942341734598117376456164094334, −7.70282942257969207736023389997, −6.75835720857323144112923149074, −6.53876572552795316440603698045, −5.59184082567252664246215870943, −5.52198466275353226488973122049, −4.54321125337695258384863067085, −4.40097747366580162117975084188, −3.26490524893388333289715416456, −3.08000224242427569012154075457, −1.50557401701584832617156823174, −1.39528505582892974646328461150,
1.39528505582892974646328461150, 1.50557401701584832617156823174, 3.08000224242427569012154075457, 3.26490524893388333289715416456, 4.40097747366580162117975084188, 4.54321125337695258384863067085, 5.52198466275353226488973122049, 5.59184082567252664246215870943, 6.53876572552795316440603698045, 6.75835720857323144112923149074, 7.70282942257969207736023389997, 7.942341734598117376456164094334, 8.430531363871330384753929024064, 8.687154242699380983384182548901, 9.419368133385122785233890515409