L(s) = 1 | + 2·3-s − 3·4-s + 4·7-s + 9-s − 6·12-s − 2·13-s + 5·16-s − 12·19-s + 8·21-s − 9·25-s − 4·27-s − 12·28-s − 4·31-s − 3·36-s − 6·37-s − 4·39-s + 10·48-s − 2·49-s + 6·52-s − 24·57-s − 12·61-s + 4·63-s − 3·64-s + 4·67-s + 4·73-s − 18·75-s + 36·76-s + ⋯ |
L(s) = 1 | + 1.15·3-s − 3/2·4-s + 1.51·7-s + 1/3·9-s − 1.73·12-s − 0.554·13-s + 5/4·16-s − 2.75·19-s + 1.74·21-s − 9/5·25-s − 0.769·27-s − 2.26·28-s − 0.718·31-s − 1/2·36-s − 0.986·37-s − 0.640·39-s + 1.44·48-s − 2/7·49-s + 0.832·52-s − 3.17·57-s − 1.53·61-s + 0.503·63-s − 3/8·64-s + 0.488·67-s + 0.468·73-s − 2.07·75-s + 4.12·76-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 131769 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 131769 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(=\) |
\(0\) |
\(L(\frac12)\) |
\(=\) |
\(0\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $\Gal(F_p)$ | $F_p(T)$ |
---|
bad | 3 | $C_2$ | \( 1 - 2 T + p T^{2} \) |
| 11 | | \( 1 \) |
good | 2 | $C_2$ | \( ( 1 - T + p T^{2} )( 1 + T + p T^{2} ) \) |
| 5 | $C_2$ | \( ( 1 - T + p T^{2} )( 1 + T + p T^{2} ) \) |
| 7 | $C_2$ | \( ( 1 - 2 T + p T^{2} )^{2} \) |
| 13 | $C_2$ | \( ( 1 + T + p T^{2} )^{2} \) |
| 17 | $C_2$ | \( ( 1 - 5 T + p T^{2} )( 1 + 5 T + p T^{2} ) \) |
| 19 | $C_2$ | \( ( 1 + 6 T + p T^{2} )^{2} \) |
| 23 | $C_2$ | \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \) |
| 29 | $C_2$ | \( ( 1 - 9 T + p T^{2} )( 1 + 9 T + p T^{2} ) \) |
| 31 | $C_2$ | \( ( 1 + 2 T + p T^{2} )^{2} \) |
| 37 | $C_2$ | \( ( 1 + 3 T + p T^{2} )^{2} \) |
| 41 | $C_2$ | \( ( 1 - 5 T + p T^{2} )( 1 + 5 T + p T^{2} ) \) |
| 43 | $C_2$ | \( ( 1 + p T^{2} )^{2} \) |
| 47 | $C_2$ | \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \) |
| 53 | $C_2$ | \( ( 1 - 9 T + p T^{2} )( 1 + 9 T + p T^{2} ) \) |
| 59 | $C_2$ | \( ( 1 - 8 T + p T^{2} )( 1 + 8 T + p T^{2} ) \) |
| 61 | $C_2$ | \( ( 1 + 6 T + p T^{2} )^{2} \) |
| 67 | $C_2$ | \( ( 1 - 2 T + p T^{2} )^{2} \) |
| 71 | $C_2$ | \( ( 1 - 12 T + p T^{2} )( 1 + 12 T + p T^{2} ) \) |
| 73 | $C_2$ | \( ( 1 - 2 T + p T^{2} )^{2} \) |
| 79 | $C_2$ | \( ( 1 - 10 T + p T^{2} )^{2} \) |
| 83 | $C_2$ | \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \) |
| 89 | $C_2$ | \( ( 1 - 9 T + p T^{2} )( 1 + 9 T + p T^{2} ) \) |
| 97 | $C_2$ | \( ( 1 + 13 T + p T^{2} )^{2} \) |
show more | | |
show less | | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.127942331541421284163370204249, −8.507285126107606377633981082529, −8.264856530445176716222542589828, −8.010979443598278861073897866124, −7.49323810887805876503518242868, −6.74272981252089439582006678154, −5.97336865191641765106303088244, −5.44861874763839175210229504778, −4.68607726153727393582211790246, −4.50122243823954701224397495329, −3.89751875979123562820900427499, −3.33556810952068997685484956976, −2.02313919782203708817074154348, −1.98218366620434510274683932709, 0,
1.98218366620434510274683932709, 2.02313919782203708817074154348, 3.33556810952068997685484956976, 3.89751875979123562820900427499, 4.50122243823954701224397495329, 4.68607726153727393582211790246, 5.44861874763839175210229504778, 5.97336865191641765106303088244, 6.74272981252089439582006678154, 7.49323810887805876503518242868, 8.010979443598278861073897866124, 8.264856530445176716222542589828, 8.507285126107606377633981082529, 9.127942331541421284163370204249