Properties

Label 4-363e2-1.1-c3e2-0-0
Degree $4$
Conductor $131769$
Sign $1$
Analytic cond. $458.717$
Root an. cond. $4.62792$
Motivic weight $3$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 6·3-s + 11·4-s + 18·5-s + 27·9-s − 66·12-s − 108·15-s + 57·16-s + 198·20-s + 180·23-s − 7·25-s − 108·27-s − 376·31-s + 297·36-s + 266·37-s + 486·45-s + 144·47-s − 342·48-s − 98·49-s − 90·53-s + 756·59-s − 1.18e3·60-s − 77·64-s − 772·67-s − 1.08e3·69-s − 396·71-s + 42·75-s + 1.02e3·80-s + ⋯
L(s)  = 1  − 1.15·3-s + 11/8·4-s + 1.60·5-s + 9-s − 1.58·12-s − 1.85·15-s + 0.890·16-s + 2.21·20-s + 1.63·23-s − 0.0559·25-s − 0.769·27-s − 2.17·31-s + 11/8·36-s + 1.18·37-s + 1.60·45-s + 0.446·47-s − 1.02·48-s − 2/7·49-s − 0.233·53-s + 1.66·59-s − 2.55·60-s − 0.150·64-s − 1.40·67-s − 1.88·69-s − 0.661·71-s + 0.0646·75-s + 1.43·80-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 131769 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 131769 ^{s/2} \, \Gamma_{\C}(s+3/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(131769\)    =    \(3^{2} \cdot 11^{4}\)
Sign: $1$
Analytic conductor: \(458.717\)
Root analytic conductor: \(4.62792\)
Motivic weight: \(3\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 131769,\ (\ :3/2, 3/2),\ 1)\)

Particular Values

\(L(2)\) \(\approx\) \(3.560768966\)
\(L(\frac12)\) \(\approx\) \(3.560768966\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad3$C_1$ \( ( 1 + p T )^{2} \)
11 \( 1 \)
good2$C_2^2$ \( 1 - 11 T^{2} + p^{6} T^{4} \)
5$C_2$ \( ( 1 - 9 T + p^{3} T^{2} )^{2} \)
7$C_2^2$ \( 1 + 2 p^{2} T^{2} + p^{6} T^{4} \)
13$C_2^2$ \( 1 - 649 T^{2} + p^{6} T^{4} \)
17$C_2^2$ \( 1 + 7 p^{2} T^{2} + p^{6} T^{4} \)
19$C_2^2$ \( 1 - 7450 T^{2} + p^{6} T^{4} \)
23$C_2$ \( ( 1 - 90 T + p^{3} T^{2} )^{2} \)
29$C_2^2$ \( 1 + 40975 T^{2} + p^{6} T^{4} \)
31$C_2$ \( ( 1 + 188 T + p^{3} T^{2} )^{2} \)
37$C_2$ \( ( 1 - 133 T + p^{3} T^{2} )^{2} \)
41$C_2^2$ \( 1 + 136519 T^{2} + p^{6} T^{4} \)
43$C_2^2$ \( 1 + 153722 T^{2} + p^{6} T^{4} \)
47$C_2$ \( ( 1 - 72 T + p^{3} T^{2} )^{2} \)
53$C_2$ \( ( 1 + 45 T + p^{3} T^{2} )^{2} \)
59$C_2$ \( ( 1 - 378 T + p^{3} T^{2} )^{2} \)
61$C_2^2$ \( 1 + 65162 T^{2} + p^{6} T^{4} \)
67$C_2$ \( ( 1 + 386 T + p^{3} T^{2} )^{2} \)
71$C_2$ \( ( 1 + 198 T + p^{3} T^{2} )^{2} \)
73$C_2^2$ \( 1 + 772226 T^{2} + p^{6} T^{4} \)
79$C_2^2$ \( 1 + 962846 T^{2} + p^{6} T^{4} \)
83$C_2^2$ \( 1 - 411626 T^{2} + p^{6} T^{4} \)
89$C_2$ \( ( 1 - 45 T + p^{3} T^{2} )^{2} \)
97$C_2$ \( ( 1 - 89 T + p^{3} T^{2} )^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−11.41505408062244613497981974528, −10.64730834709451333114530038340, −10.56939826390575742678670119827, −10.01599795453316482997661429344, −9.386983654753553971010744110187, −9.272713350031705677718181896145, −8.500437952763112088089747877112, −7.61318835890389105509109530079, −7.26151463735823526623255242708, −6.89723074268839939536178584405, −6.29664924774416492909103212221, −5.87109790700174915599183011078, −5.66920484391210539756562407247, −5.08815290414079960065966673380, −4.39417990513750377918682885445, −3.47774361089771024229608245461, −2.71981149544223796803739153556, −1.95681424528205448762640250600, −1.66267948654698761608896529334, −0.68522241447523316514750693098, 0.68522241447523316514750693098, 1.66267948654698761608896529334, 1.95681424528205448762640250600, 2.71981149544223796803739153556, 3.47774361089771024229608245461, 4.39417990513750377918682885445, 5.08815290414079960065966673380, 5.66920484391210539756562407247, 5.87109790700174915599183011078, 6.29664924774416492909103212221, 6.89723074268839939536178584405, 7.26151463735823526623255242708, 7.61318835890389105509109530079, 8.500437952763112088089747877112, 9.272713350031705677718181896145, 9.386983654753553971010744110187, 10.01599795453316482997661429344, 10.56939826390575742678670119827, 10.64730834709451333114530038340, 11.41505408062244613497981974528

Graph of the $Z$-function along the critical line