Properties

Label 4-3744e2-1.1-c1e2-0-11
Degree $4$
Conductor $14017536$
Sign $1$
Analytic cond. $893.770$
Root an. cond. $5.46772$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 6·13-s + 16·17-s + 6·25-s − 8·29-s + 14·49-s + 8·53-s − 20·61-s + 40·101-s + 32·113-s + 22·121-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + 167-s + 23·169-s + 173-s + 179-s + 181-s + 191-s + 193-s + 197-s + 199-s + ⋯
L(s)  = 1  + 1.66·13-s + 3.88·17-s + 6/5·25-s − 1.48·29-s + 2·49-s + 1.09·53-s − 2.56·61-s + 3.98·101-s + 3.01·113-s + 2·121-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + 0.0819·149-s + 0.0813·151-s + 0.0798·157-s + 0.0783·163-s + 0.0773·167-s + 1.76·169-s + 0.0760·173-s + 0.0747·179-s + 0.0743·181-s + 0.0723·191-s + 0.0719·193-s + 0.0712·197-s + 0.0708·199-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 14017536 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 14017536 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(14017536\)    =    \(2^{10} \cdot 3^{4} \cdot 13^{2}\)
Sign: $1$
Analytic conductor: \(893.770\)
Root analytic conductor: \(5.46772\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 14017536,\ (\ :1/2, 1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(4.403643248\)
\(L(\frac12)\) \(\approx\) \(4.403643248\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
13$C_2$ \( 1 - 6 T + p T^{2} \)
good5$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
7$C_2$ \( ( 1 - p T^{2} )^{2} \)
11$C_2$ \( ( 1 - p T^{2} )^{2} \)
17$C_2$ \( ( 1 - 8 T + p T^{2} )^{2} \)
19$C_2$ \( ( 1 - p T^{2} )^{2} \)
23$C_2$ \( ( 1 + p T^{2} )^{2} \)
29$C_2$ \( ( 1 + 4 T + p T^{2} )^{2} \)
31$C_2$ \( ( 1 - p T^{2} )^{2} \)
37$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
41$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + 8 T + p T^{2} ) \)
43$C_2$ \( ( 1 + p T^{2} )^{2} \)
47$C_2$ \( ( 1 - p T^{2} )^{2} \)
53$C_2$ \( ( 1 - 4 T + p T^{2} )^{2} \)
59$C_2$ \( ( 1 - p T^{2} )^{2} \)
61$C_2$ \( ( 1 + 10 T + p T^{2} )^{2} \)
67$C_2$ \( ( 1 - p T^{2} )^{2} \)
71$C_2$ \( ( 1 - p T^{2} )^{2} \)
73$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
79$C_2$ \( ( 1 + p T^{2} )^{2} \)
83$C_2$ \( ( 1 - p T^{2} )^{2} \)
89$C_2$ \( ( 1 - 16 T + p T^{2} )( 1 + 16 T + p T^{2} ) \)
97$C_2$ \( ( 1 - 18 T + p T^{2} )( 1 + 18 T + p T^{2} ) \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.667281245859332134833304140797, −8.464867303159712782904789461430, −7.76500793550722442561693735628, −7.62692137068728984506685939403, −7.36135638355492589837050250146, −7.04110440352934271461283530119, −6.27998831333904233963136975561, −5.88398763317462397769425154202, −5.85976757184624648135201526323, −5.51731948017160269157775529135, −4.87967770310352242433037291235, −4.66087212157161813396962994440, −3.75627472311557329092935346737, −3.70343249980045469828904931416, −3.27893660386205177589093148331, −2.99186761413792214296925045609, −2.20973226826993999093832080082, −1.57107004787928035506377007928, −1.05920068574304755144541064221, −0.77508174864437794395561188419, 0.77508174864437794395561188419, 1.05920068574304755144541064221, 1.57107004787928035506377007928, 2.20973226826993999093832080082, 2.99186761413792214296925045609, 3.27893660386205177589093148331, 3.70343249980045469828904931416, 3.75627472311557329092935346737, 4.66087212157161813396962994440, 4.87967770310352242433037291235, 5.51731948017160269157775529135, 5.85976757184624648135201526323, 5.88398763317462397769425154202, 6.27998831333904233963136975561, 7.04110440352934271461283530119, 7.36135638355492589837050250146, 7.62692137068728984506685939403, 7.76500793550722442561693735628, 8.464867303159712782904789461430, 8.667281245859332134833304140797

Graph of the $Z$-function along the critical line