L(s) = 1 | + 6·13-s + 16·17-s + 6·25-s − 8·29-s + 14·49-s + 8·53-s − 20·61-s + 40·101-s + 32·113-s + 22·121-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + 167-s + 23·169-s + 173-s + 179-s + 181-s + 191-s + 193-s + 197-s + 199-s + ⋯ |
L(s) = 1 | + 1.66·13-s + 3.88·17-s + 6/5·25-s − 1.48·29-s + 2·49-s + 1.09·53-s − 2.56·61-s + 3.98·101-s + 3.01·113-s + 2·121-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + 0.0819·149-s + 0.0813·151-s + 0.0798·157-s + 0.0783·163-s + 0.0773·167-s + 1.76·169-s + 0.0760·173-s + 0.0747·179-s + 0.0743·181-s + 0.0723·191-s + 0.0719·193-s + 0.0712·197-s + 0.0708·199-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 14017536 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 14017536 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(4.403643248\) |
\(L(\frac12)\) |
\(\approx\) |
\(4.403643248\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $\Gal(F_p)$ | $F_p(T)$ |
---|
bad | 2 | | \( 1 \) |
| 3 | | \( 1 \) |
| 13 | $C_2$ | \( 1 - 6 T + p T^{2} \) |
good | 5 | $C_2$ | \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \) |
| 7 | $C_2$ | \( ( 1 - p T^{2} )^{2} \) |
| 11 | $C_2$ | \( ( 1 - p T^{2} )^{2} \) |
| 17 | $C_2$ | \( ( 1 - 8 T + p T^{2} )^{2} \) |
| 19 | $C_2$ | \( ( 1 - p T^{2} )^{2} \) |
| 23 | $C_2$ | \( ( 1 + p T^{2} )^{2} \) |
| 29 | $C_2$ | \( ( 1 + 4 T + p T^{2} )^{2} \) |
| 31 | $C_2$ | \( ( 1 - p T^{2} )^{2} \) |
| 37 | $C_2$ | \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \) |
| 41 | $C_2$ | \( ( 1 - 8 T + p T^{2} )( 1 + 8 T + p T^{2} ) \) |
| 43 | $C_2$ | \( ( 1 + p T^{2} )^{2} \) |
| 47 | $C_2$ | \( ( 1 - p T^{2} )^{2} \) |
| 53 | $C_2$ | \( ( 1 - 4 T + p T^{2} )^{2} \) |
| 59 | $C_2$ | \( ( 1 - p T^{2} )^{2} \) |
| 61 | $C_2$ | \( ( 1 + 10 T + p T^{2} )^{2} \) |
| 67 | $C_2$ | \( ( 1 - p T^{2} )^{2} \) |
| 71 | $C_2$ | \( ( 1 - p T^{2} )^{2} \) |
| 73 | $C_2$ | \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \) |
| 79 | $C_2$ | \( ( 1 + p T^{2} )^{2} \) |
| 83 | $C_2$ | \( ( 1 - p T^{2} )^{2} \) |
| 89 | $C_2$ | \( ( 1 - 16 T + p T^{2} )( 1 + 16 T + p T^{2} ) \) |
| 97 | $C_2$ | \( ( 1 - 18 T + p T^{2} )( 1 + 18 T + p T^{2} ) \) |
show more | | |
show less | | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.667281245859332134833304140797, −8.464867303159712782904789461430, −7.76500793550722442561693735628, −7.62692137068728984506685939403, −7.36135638355492589837050250146, −7.04110440352934271461283530119, −6.27998831333904233963136975561, −5.88398763317462397769425154202, −5.85976757184624648135201526323, −5.51731948017160269157775529135, −4.87967770310352242433037291235, −4.66087212157161813396962994440, −3.75627472311557329092935346737, −3.70343249980045469828904931416, −3.27893660386205177589093148331, −2.99186761413792214296925045609, −2.20973226826993999093832080082, −1.57107004787928035506377007928, −1.05920068574304755144541064221, −0.77508174864437794395561188419,
0.77508174864437794395561188419, 1.05920068574304755144541064221, 1.57107004787928035506377007928, 2.20973226826993999093832080082, 2.99186761413792214296925045609, 3.27893660386205177589093148331, 3.70343249980045469828904931416, 3.75627472311557329092935346737, 4.66087212157161813396962994440, 4.87967770310352242433037291235, 5.51731948017160269157775529135, 5.85976757184624648135201526323, 5.88398763317462397769425154202, 6.27998831333904233963136975561, 7.04110440352934271461283530119, 7.36135638355492589837050250146, 7.62692137068728984506685939403, 7.76500793550722442561693735628, 8.464867303159712782904789461430, 8.667281245859332134833304140797