L(s) = 1 | − 2·3-s + 4·5-s + 2·7-s + 9-s − 2·11-s + 4·13-s − 8·15-s + 2·17-s + 2·19-s − 4·21-s + 4·23-s + 2·25-s + 4·27-s + 6·31-s + 4·33-s + 8·35-s + 8·37-s − 8·39-s + 6·41-s − 18·43-s + 4·45-s + 16·47-s − 2·49-s − 4·51-s − 8·55-s − 4·57-s − 22·59-s + ⋯ |
L(s) = 1 | − 1.15·3-s + 1.78·5-s + 0.755·7-s + 1/3·9-s − 0.603·11-s + 1.10·13-s − 2.06·15-s + 0.485·17-s + 0.458·19-s − 0.872·21-s + 0.834·23-s + 2/5·25-s + 0.769·27-s + 1.07·31-s + 0.696·33-s + 1.35·35-s + 1.31·37-s − 1.28·39-s + 0.937·41-s − 2.74·43-s + 0.596·45-s + 2.33·47-s − 2/7·49-s − 0.560·51-s − 1.07·55-s − 0.529·57-s − 2.86·59-s + ⋯ |
Λ(s)=(=(147456s/2ΓC(s)2L(s)Λ(2−s)
Λ(s)=(=(147456s/2ΓC(s+1/2)2L(s)Λ(1−s)
Degree: |
4 |
Conductor: |
147456
= 214⋅32
|
Sign: |
1
|
Analytic conductor: |
9.40192 |
Root analytic conductor: |
1.75107 |
Motivic weight: |
1 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(4, 147456, ( :1/2,1/2), 1)
|
Particular Values
L(1) |
≈ |
1.748513861 |
L(21) |
≈ |
1.748513861 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | | 1 |
| 3 | C2 | 1+2T+pT2 |
good | 5 | C2 | (1−2T+pT2)2 |
| 7 | C2×C2 | (1−4T+pT2)(1+2T+pT2) |
| 11 | C2×C2 | (1−2T+pT2)(1+4T+pT2) |
| 13 | C2 | (1−2T+pT2)2 |
| 17 | C2×C2 | (1−4T+pT2)(1+2T+pT2) |
| 19 | C2×C2 | (1−4T+pT2)(1+2T+pT2) |
| 23 | C2×C2 | (1−8T+pT2)(1+4T+pT2) |
| 29 | C2 | (1−6T+pT2)(1+6T+pT2) |
| 31 | C2×C2 | (1−6T+pT2)(1+pT2) |
| 37 | C2×C2 | (1−10T+pT2)(1+2T+pT2) |
| 41 | C2×C2 | (1−12T+pT2)(1+6T+pT2) |
| 43 | C2×C2 | (1+6T+pT2)(1+12T+pT2) |
| 47 | C2 | (1−8T+pT2)2 |
| 53 | C2 | (1−6T+pT2)(1+6T+pT2) |
| 59 | C2×C2 | (1+8T+pT2)(1+14T+pT2) |
| 61 | C2×C2 | (1−2T+pT2)(1+10T+pT2) |
| 67 | C2×C2 | (1−8T+pT2)(1+10T+pT2) |
| 71 | C2×C2 | (1+pT2)(1+12T+pT2) |
| 73 | C2×C2 | (1−14T+pT2)(1−2T+pT2) |
| 79 | C2×C2 | (1−14T+pT2)(1−8T+pT2) |
| 83 | C2×C2 | (1−6T+pT2)(1+12T+pT2) |
| 89 | C2×C2 | (1+2T+pT2)(1+8T+pT2) |
| 97 | C2 | (1+2T+pT2)2 |
show more | | |
show less | | |
L(s)=p∏ j=1∏4(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−13.6777112753, −13.3874273048, −12.9029585763, −12.2932744177, −12.0337535527, −11.2885358311, −11.2403489512, −10.5726584783, −10.3699232804, −9.87920052713, −9.21593970226, −9.13514551558, −8.16659881546, −7.98420780715, −7.29562794842, −6.39871498619, −6.33590788591, −5.60222363254, −5.59100833138, −4.83385679588, −4.43324404972, −3.30982302623, −2.63774465597, −1.73703685485, −1.06529864489,
1.06529864489, 1.73703685485, 2.63774465597, 3.30982302623, 4.43324404972, 4.83385679588, 5.59100833138, 5.60222363254, 6.33590788591, 6.39871498619, 7.29562794842, 7.98420780715, 8.16659881546, 9.13514551558, 9.21593970226, 9.87920052713, 10.3699232804, 10.5726584783, 11.2403489512, 11.2885358311, 12.0337535527, 12.2932744177, 12.9029585763, 13.3874273048, 13.6777112753