L(s) = 1 | + 2·3-s + 4·5-s + 9-s + 8·15-s + 4·19-s + 8·23-s + 2·25-s − 4·27-s − 12·29-s + 12·43-s + 4·45-s − 16·47-s + 2·49-s − 12·53-s + 8·57-s + 20·67-s + 16·69-s + 24·71-s + 28·73-s + 4·75-s − 11·81-s − 24·87-s + 16·95-s − 4·97-s − 12·101-s + 32·115-s − 18·121-s + ⋯ |
L(s) = 1 | + 1.15·3-s + 1.78·5-s + 1/3·9-s + 2.06·15-s + 0.917·19-s + 1.66·23-s + 2/5·25-s − 0.769·27-s − 2.22·29-s + 1.82·43-s + 0.596·45-s − 2.33·47-s + 2/7·49-s − 1.64·53-s + 1.05·57-s + 2.44·67-s + 1.92·69-s + 2.84·71-s + 3.27·73-s + 0.461·75-s − 1.22·81-s − 2.57·87-s + 1.64·95-s − 0.406·97-s − 1.19·101-s + 2.98·115-s − 1.63·121-s + ⋯ |
Λ(s)=(=(147456s/2ΓC(s)2L(s)Λ(2−s)
Λ(s)=(=(147456s/2ΓC(s+1/2)2L(s)Λ(1−s)
Degree: |
4 |
Conductor: |
147456
= 214⋅32
|
Sign: |
1
|
Analytic conductor: |
9.40192 |
Root analytic conductor: |
1.75107 |
Motivic weight: |
1 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(4, 147456, ( :1/2,1/2), 1)
|
Particular Values
L(1) |
≈ |
3.325799328 |
L(21) |
≈ |
3.325799328 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | | 1 |
| 3 | C2 | 1−2T+pT2 |
good | 5 | C2 | (1−2T+pT2)2 |
| 7 | C2 | (1−4T+pT2)(1+4T+pT2) |
| 11 | C2 | (1−2T+pT2)(1+2T+pT2) |
| 13 | C2 | (1−2T+pT2)(1+2T+pT2) |
| 17 | C2 | (1−2T+pT2)(1+2T+pT2) |
| 19 | C2 | (1−2T+pT2)2 |
| 23 | C2 | (1−4T+pT2)2 |
| 29 | C2 | (1+6T+pT2)2 |
| 31 | C2 | (1+pT2)2 |
| 37 | C2 | (1−10T+pT2)(1+10T+pT2) |
| 41 | C2 | (1−6T+pT2)(1+6T+pT2) |
| 43 | C2 | (1−6T+pT2)2 |
| 47 | C2 | (1+8T+pT2)2 |
| 53 | C2 | (1+6T+pT2)2 |
| 59 | C2 | (1−14T+pT2)(1+14T+pT2) |
| 61 | C2 | (1−2T+pT2)(1+2T+pT2) |
| 67 | C2 | (1−10T+pT2)2 |
| 71 | C2 | (1−12T+pT2)2 |
| 73 | C2 | (1−14T+pT2)2 |
| 79 | C2 | (1−8T+pT2)(1+8T+pT2) |
| 83 | C2 | (1−6T+pT2)(1+6T+pT2) |
| 89 | C2 | (1−2T+pT2)(1+2T+pT2) |
| 97 | C2 | (1+2T+pT2)2 |
show more | | |
show less | | |
L(s)=p∏ j=1∏4(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.385355573475711088007535446099, −9.174652574334721806401375408825, −8.173183686627627779120693205031, −8.075661729852922503369502159976, −7.44440089656946414681700247943, −6.78571919296342801026858814862, −6.40345159211036072533921924868, −5.64130249043000575312616744005, −5.36530815656846370209456927790, −4.88235750431299832390164653972, −3.62014189552160099547672624510, −3.56276783709589056726776122484, −2.46608091328452001690059553408, −2.20034159198920039710092677140, −1.34910975935301153966920068234,
1.34910975935301153966920068234, 2.20034159198920039710092677140, 2.46608091328452001690059553408, 3.56276783709589056726776122484, 3.62014189552160099547672624510, 4.88235750431299832390164653972, 5.36530815656846370209456927790, 5.64130249043000575312616744005, 6.40345159211036072533921924868, 6.78571919296342801026858814862, 7.44440089656946414681700247943, 8.075661729852922503369502159976, 8.173183686627627779120693205031, 9.174652574334721806401375408825, 9.385355573475711088007535446099