L(s) = 1 | − 9-s − 4·17-s − 6·25-s − 12·41-s − 14·49-s − 20·73-s + 81-s + 12·89-s − 4·97-s + 36·113-s + 6·121-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 4·153-s + 157-s + 163-s + 167-s − 22·169-s + 173-s + 179-s + 181-s + 191-s + 193-s + ⋯ |
L(s) = 1 | − 1/3·9-s − 0.970·17-s − 6/5·25-s − 1.87·41-s − 2·49-s − 2.34·73-s + 1/9·81-s + 1.27·89-s − 0.406·97-s + 3.38·113-s + 6/11·121-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + 0.0819·149-s + 0.0813·151-s + 0.323·153-s + 0.0798·157-s + 0.0783·163-s + 0.0773·167-s − 1.69·169-s + 0.0760·173-s + 0.0747·179-s + 0.0743·181-s + 0.0723·191-s + 0.0719·193-s + ⋯ |
Λ(s)=(=(147456s/2ΓC(s)2L(s)−Λ(2−s)
Λ(s)=(=(147456s/2ΓC(s+1/2)2L(s)−Λ(1−s)
Degree: |
4 |
Conductor: |
147456
= 214⋅32
|
Sign: |
−1
|
Analytic conductor: |
9.40192 |
Root analytic conductor: |
1.75107 |
Motivic weight: |
1 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
yes
|
Self-dual: |
yes
|
Analytic rank: |
1
|
Selberg data: |
(4, 147456, ( :1/2,1/2), −1)
|
Particular Values
L(1) |
= |
0 |
L(21) |
= |
0 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | | 1 |
| 3 | C2 | 1+T2 |
good | 5 | C2 | (1−2T+pT2)(1+2T+pT2) |
| 7 | C2 | (1+pT2)2 |
| 11 | C22 | 1−6T2+p2T4 |
| 13 | C2 | (1−2T+pT2)(1+2T+pT2) |
| 17 | C2 | (1+2T+pT2)2 |
| 19 | C22 | 1−22T2+p2T4 |
| 23 | C2 | (1−8T+pT2)(1+8T+pT2) |
| 29 | C2 | (1−6T+pT2)(1+6T+pT2) |
| 31 | C2 | (1−8T+pT2)(1+8T+pT2) |
| 37 | C2 | (1−6T+pT2)(1+6T+pT2) |
| 41 | C2 | (1+6T+pT2)2 |
| 43 | C22 | 1−70T2+p2T4 |
| 47 | C2 | (1+pT2)2 |
| 53 | C2 | (1−2T+pT2)(1+2T+pT2) |
| 59 | C22 | 1−102T2+p2T4 |
| 61 | C2 | (1−2T+pT2)(1+2T+pT2) |
| 67 | C22 | 1−118T2+p2T4 |
| 71 | C2 | (1−8T+pT2)(1+8T+pT2) |
| 73 | C2 | (1+10T+pT2)2 |
| 79 | C2 | (1−8T+pT2)(1+8T+pT2) |
| 83 | C22 | 1−150T2+p2T4 |
| 89 | C2 | (1−6T+pT2)2 |
| 97 | C2 | (1+2T+pT2)2 |
show more | | |
show less | | |
L(s)=p∏ j=1∏4(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.921254360940967854582257245528, −8.666819353027446340954917061212, −8.113379036905717657653074471412, −7.65564630182415559463917551272, −7.06735387836962857768582860218, −6.58560781686114559363252892690, −6.06492305002903915597915546629, −5.61558786042195542575202104887, −4.81542349107446102730772195937, −4.54676209733795639967608998188, −3.65399134625069874060710032552, −3.20107273236009553461915677614, −2.29353120572318785524143704109, −1.61158418780440794414710143733, 0,
1.61158418780440794414710143733, 2.29353120572318785524143704109, 3.20107273236009553461915677614, 3.65399134625069874060710032552, 4.54676209733795639967608998188, 4.81542349107446102730772195937, 5.61558786042195542575202104887, 6.06492305002903915597915546629, 6.58560781686114559363252892690, 7.06735387836962857768582860218, 7.65564630182415559463917551272, 8.113379036905717657653074471412, 8.666819353027446340954917061212, 8.921254360940967854582257245528