L(s) = 1 | + 9-s − 4·17-s − 8·23-s − 2·25-s − 8·31-s − 4·41-s − 16·47-s − 10·49-s − 8·71-s + 12·73-s + 8·79-s + 81-s + 4·89-s + 4·97-s − 16·103-s + 4·113-s + 10·121-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s − 4·153-s + 157-s + 163-s + 167-s + ⋯ |
L(s) = 1 | + 1/3·9-s − 0.970·17-s − 1.66·23-s − 2/5·25-s − 1.43·31-s − 0.624·41-s − 2.33·47-s − 1.42·49-s − 0.949·71-s + 1.40·73-s + 0.900·79-s + 1/9·81-s + 0.423·89-s + 0.406·97-s − 1.57·103-s + 0.376·113-s + 0.909·121-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + 0.0819·149-s + 0.0813·151-s − 0.323·153-s + 0.0798·157-s + 0.0783·163-s + 0.0773·167-s + ⋯ |
Λ(s)=(=(147456s/2ΓC(s)2L(s)−Λ(2−s)
Λ(s)=(=(147456s/2ΓC(s+1/2)2L(s)−Λ(1−s)
Degree: |
4 |
Conductor: |
147456
= 214⋅32
|
Sign: |
−1
|
Analytic conductor: |
9.40192 |
Root analytic conductor: |
1.75107 |
Motivic weight: |
1 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
yes
|
Self-dual: |
yes
|
Analytic rank: |
1
|
Selberg data: |
(4, 147456, ( :1/2,1/2), −1)
|
Particular Values
L(1) |
= |
0 |
L(21) |
= |
0 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | | 1 |
| 3 | C1×C1 | (1−T)(1+T) |
good | 5 | C22 | 1+2T2+p2T4 |
| 7 | C2 | (1−2T+pT2)(1+2T+pT2) |
| 11 | C22 | 1−10T2+p2T4 |
| 13 | C2 | (1−6T+pT2)(1+6T+pT2) |
| 17 | C2×C2 | (1−2T+pT2)(1+6T+pT2) |
| 19 | C22 | 1−10T2+p2T4 |
| 23 | C2×C2 | (1+pT2)(1+8T+pT2) |
| 29 | C22 | 1−30T2+p2T4 |
| 31 | C2×C2 | (1+2T+pT2)(1+6T+pT2) |
| 37 | C22 | 1+6T2+p2T4 |
| 41 | C2×C2 | (1−2T+pT2)(1+6T+pT2) |
| 43 | C22 | 1−26T2+p2T4 |
| 47 | C2×C2 | (1+4T+pT2)(1+12T+pT2) |
| 53 | C22 | 1+82T2+p2T4 |
| 59 | C22 | 1+6T2+p2T4 |
| 61 | C22 | 1−10T2+p2T4 |
| 67 | C22 | 1−106T2+p2T4 |
| 71 | C2×C2 | (1+pT2)(1+8T+pT2) |
| 73 | C2×C2 | (1−14T+pT2)(1+2T+pT2) |
| 79 | C2×C2 | (1−10T+pT2)(1+2T+pT2) |
| 83 | C22 | 1+70T2+p2T4 |
| 89 | C2 | (1−2T+pT2)2 |
| 97 | C2×C2 | (1−18T+pT2)(1+14T+pT2) |
show more | | |
show less | | |
L(s)=p∏ j=1∏4(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.201358350412436276971805048079, −8.452978353281669605546395466725, −8.086442084037045849066002768206, −7.75550416430445217121413358077, −6.93561744728787393669725940046, −6.70362656258604102218812142163, −6.07594650208600870826189799266, −5.58468685813797179037662886736, −4.86181106786101780733721327564, −4.44564826696090424146474552868, −3.70892625990603304211839494755, −3.25898073626678173512567067932, −2.14369263635030970775219746009, −1.71140582351257440196866579310, 0,
1.71140582351257440196866579310, 2.14369263635030970775219746009, 3.25898073626678173512567067932, 3.70892625990603304211839494755, 4.44564826696090424146474552868, 4.86181106786101780733721327564, 5.58468685813797179037662886736, 6.07594650208600870826189799266, 6.70362656258604102218812142163, 6.93561744728787393669725940046, 7.75550416430445217121413358077, 8.086442084037045849066002768206, 8.452978353281669605546395466725, 9.201358350412436276971805048079