L(s) = 1 | − 4·2-s + 3-s + 12·4-s + 10·5-s − 4·6-s + 57·7-s − 32·8-s − 9·9-s − 40·10-s + 10·11-s + 12·12-s + 13·13-s − 228·14-s + 10·15-s + 80·16-s − 51·17-s + 36·18-s − 38·19-s + 120·20-s + 57·21-s − 40·22-s − 155·23-s − 32·24-s + 2·25-s − 52·26-s + 8·27-s + 684·28-s + ⋯ |
L(s) = 1 | − 1.41·2-s + 0.192·3-s + 3/2·4-s + 0.894·5-s − 0.272·6-s + 3.07·7-s − 1.41·8-s − 1/3·9-s − 1.26·10-s + 0.274·11-s + 0.288·12-s + 0.277·13-s − 4.35·14-s + 0.172·15-s + 5/4·16-s − 0.727·17-s + 0.471·18-s − 0.458·19-s + 1.34·20-s + 0.592·21-s − 0.387·22-s − 1.40·23-s − 0.272·24-s + 0.0159·25-s − 0.392·26-s + 0.0570·27-s + 4.61·28-s + ⋯ |
Λ(s)=(=(1444s/2ΓC(s)2L(s)Λ(4−s)
Λ(s)=(=(1444s/2ΓC(s+3/2)2L(s)Λ(1−s)
Degree: |
4 |
Conductor: |
1444
= 22⋅192
|
Sign: |
1
|
Analytic conductor: |
5.02688 |
Root analytic conductor: |
1.49735 |
Motivic weight: |
3 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(4, 1444, ( :3/2,3/2), 1)
|
Particular Values
L(2) |
≈ |
1.261919795 |
L(21) |
≈ |
1.261919795 |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | C1 | (1+pT)2 |
| 19 | C1 | (1+pT)2 |
good | 3 | D4 | 1−T+10T2−p3T3+p6T4 |
| 5 | D4 | 1−2pT+98T2−2p4T3+p6T4 |
| 7 | D4 | 1−57T+1454T2−57p3T3+p6T4 |
| 11 | D4 | 1−10T+2510T2−10p3T3+p6T4 |
| 13 | D4 | 1−pT+2268T2−p4T3+p6T4 |
| 17 | D4 | 1+3pT+520T2+3p4T3+p6T4 |
| 23 | D4 | 1+155T+994pT2+155p3T3+p6T4 |
| 29 | D4 | 1+79T+13124T2+79p3T3+p6T4 |
| 31 | D4 | 1+16T+48318T2+16p3T3+p6T4 |
| 37 | D4 | 1−380T+126078T2−380p3T3+p6T4 |
| 41 | D4 | 1+790T+292274T2+790p3T3+p6T4 |
| 43 | D4 | 1−296T+78966T2−296p3T3+p6T4 |
| 47 | D4 | 1+200T+146846T2+200p3T3+p6T4 |
| 53 | D4 | 1−397T+333572T2−397p3T3+p6T4 |
| 59 | D4 | 1−201T+197794T2−201p3T3+p6T4 |
| 61 | D4 | 1+680T+483894T2+680p3T3+p6T4 |
| 67 | D4 | 1+939T+740138T2+939p3T3+p6T4 |
| 71 | D4 | 1−406T+735614T2−406p3T3+p6T4 |
| 73 | D4 | 1−123T+781772T2−123p3T3+p6T4 |
| 79 | D4 | 1−106T+840030T2−106p3T3+p6T4 |
| 83 | D4 | 1−2226T+2380750T2−2226p3T3+p6T4 |
| 89 | D4 | 1+870T+1594738T2+870p3T3+p6T4 |
| 97 | D4 | 1+1864T+2438382T2+1864p3T3+p6T4 |
show more | | |
show less | | |
L(s)=p∏ j=1∏4(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−16.42362552439556254127211450200, −15.44249293269138385164643740783, −14.83341150220674979248969608990, −14.65462673527854666915208766640, −13.84081462250573773073310298309, −13.42805270694816707438894980498, −11.93686823526188039545269815241, −11.81518792602670282986256710435, −10.89036109132546340838310197267, −10.80785125592809109236580824559, −9.841794763631763200053699624608, −9.072963783034075895055675876009, −8.266695078387097207180441493137, −8.232195932100640022413740604025, −7.35742288151623467179702724045, −6.24615267287495912324842548824, −5.39204263415166716592434760149, −4.37425361656522483900048009165, −2.14164103742936405307762083682, −1.58422284959852460289428135042,
1.58422284959852460289428135042, 2.14164103742936405307762083682, 4.37425361656522483900048009165, 5.39204263415166716592434760149, 6.24615267287495912324842548824, 7.35742288151623467179702724045, 8.232195932100640022413740604025, 8.266695078387097207180441493137, 9.072963783034075895055675876009, 9.841794763631763200053699624608, 10.80785125592809109236580824559, 10.89036109132546340838310197267, 11.81518792602670282986256710435, 11.93686823526188039545269815241, 13.42805270694816707438894980498, 13.84081462250573773073310298309, 14.65462673527854666915208766640, 14.83341150220674979248969608990, 15.44249293269138385164643740783, 16.42362552439556254127211450200