L(s) = 1 | + 7-s + 9-s + 12·19-s + 6·25-s − 4·29-s + 8·37-s + 12·47-s + 49-s − 8·59-s + 63-s + 81-s − 20·83-s + 4·103-s − 24·109-s + 4·113-s − 6·121-s + 127-s + 131-s + 12·133-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + 167-s − 18·169-s + ⋯ |
L(s) = 1 | + 0.377·7-s + 1/3·9-s + 2.75·19-s + 6/5·25-s − 0.742·29-s + 1.31·37-s + 1.75·47-s + 1/7·49-s − 1.04·59-s + 0.125·63-s + 1/9·81-s − 2.19·83-s + 0.394·103-s − 2.29·109-s + 0.376·113-s − 0.545·121-s + 0.0887·127-s + 0.0873·131-s + 1.04·133-s + 0.0854·137-s + 0.0848·139-s + 0.0819·149-s + 0.0813·151-s + 0.0798·157-s + 0.0783·163-s + 0.0773·167-s − 1.38·169-s + ⋯ |
Λ(s)=(=(395136s/2ΓC(s)2L(s)Λ(2−s)
Λ(s)=(=(395136s/2ΓC(s+1/2)2L(s)Λ(1−s)
Degree: |
4 |
Conductor: |
395136
= 27⋅32⋅73
|
Sign: |
1
|
Analytic conductor: |
25.1942 |
Root analytic conductor: |
2.24039 |
Motivic weight: |
1 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
yes
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(4, 395136, ( :1/2,1/2), 1)
|
Particular Values
L(1) |
≈ |
2.294531432 |
L(21) |
≈ |
2.294531432 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | | 1 |
| 3 | C1×C1 | (1−T)(1+T) |
| 7 | C1 | 1−T |
good | 5 | C2 | (1−4T+pT2)(1+4T+pT2) |
| 11 | C2 | (1−4T+pT2)(1+4T+pT2) |
| 13 | C22 | 1+18T2+p2T4 |
| 17 | C2 | (1−2T+pT2)(1+2T+pT2) |
| 19 | C2×C2 | (1−8T+pT2)(1−4T+pT2) |
| 23 | C2 | (1−8T+pT2)(1+8T+pT2) |
| 29 | C2×C2 | (1−2T+pT2)(1+6T+pT2) |
| 31 | C2 | (1+pT2)2 |
| 37 | C2×C2 | (1−10T+pT2)(1+2T+pT2) |
| 41 | C2 | (1−10T+pT2)(1+10T+pT2) |
| 43 | C22 | 1−10T2+p2T4 |
| 47 | C2×C2 | (1−12T+pT2)(1+pT2) |
| 53 | C2 | (1−6T+pT2)(1+6T+pT2) |
| 59 | C2×C2 | (1−4T+pT2)(1+12T+pT2) |
| 61 | C22 | 1−102T2+p2T4 |
| 67 | C22 | 1−106T2+p2T4 |
| 71 | C2 | (1−16T+pT2)(1+16T+pT2) |
| 73 | C22 | 1+94T2+p2T4 |
| 79 | C22 | 1−114T2+p2T4 |
| 83 | C2×C2 | (1+8T+pT2)(1+12T+pT2) |
| 89 | C22 | 1−42T2+p2T4 |
| 97 | C22 | 1−106T2+p2T4 |
show more | | |
show less | | |
L(s)=p∏ j=1∏4(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.817092243723242181725296380715, −8.080160915792226774767951985221, −7.58740369991958940622336029269, −7.44250648293099723920733236326, −6.94413503049518840685816373067, −6.32902796163253772483999548071, −5.70926449015034340385417075013, −5.35198542114396338677619100144, −4.90490602070295855727773873402, −4.26150609384425412337007274683, −3.75686516057931722112806716393, −2.98575273566609576233473549037, −2.64553871551281105656158994906, −1.52382382536395764588885012083, −0.944589603320793487264556311363,
0.944589603320793487264556311363, 1.52382382536395764588885012083, 2.64553871551281105656158994906, 2.98575273566609576233473549037, 3.75686516057931722112806716393, 4.26150609384425412337007274683, 4.90490602070295855727773873402, 5.35198542114396338677619100144, 5.70926449015034340385417075013, 6.32902796163253772483999548071, 6.94413503049518840685816373067, 7.44250648293099723920733236326, 7.58740369991958940622336029269, 8.080160915792226774767951985221, 8.817092243723242181725296380715