L(s) = 1 | + 3-s + 7-s − 2·9-s − 6·19-s + 21-s + 8·25-s − 5·27-s − 14·29-s − 5·31-s + 5·37-s + 2·47-s + 49-s − 4·53-s − 6·57-s − 59-s − 2·63-s + 8·75-s + 81-s − 2·83-s − 14·87-s − 5·93-s + 21·103-s − 20·109-s + 5·111-s + 113-s − 3·121-s + 127-s + ⋯ |
L(s) = 1 | + 0.577·3-s + 0.377·7-s − 2/3·9-s − 1.37·19-s + 0.218·21-s + 8/5·25-s − 0.962·27-s − 2.59·29-s − 0.898·31-s + 0.821·37-s + 0.291·47-s + 1/7·49-s − 0.549·53-s − 0.794·57-s − 0.130·59-s − 0.251·63-s + 0.923·75-s + 1/9·81-s − 0.219·83-s − 1.50·87-s − 0.518·93-s + 2.06·103-s − 1.91·109-s + 0.474·111-s + 0.0940·113-s − 0.272·121-s + 0.0887·127-s + ⋯ |
Λ(s)=(=(395136s/2ΓC(s)2L(s)−Λ(2−s)
Λ(s)=(=(395136s/2ΓC(s+1/2)2L(s)−Λ(1−s)
Degree: |
4 |
Conductor: |
395136
= 27⋅32⋅73
|
Sign: |
−1
|
Analytic conductor: |
25.1942 |
Root analytic conductor: |
2.24039 |
Motivic weight: |
1 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
yes
|
Self-dual: |
yes
|
Analytic rank: |
1
|
Selberg data: |
(4, 395136, ( :1/2,1/2), −1)
|
Particular Values
L(1) |
= |
0 |
L(21) |
= |
0 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | | 1 |
| 3 | C2 | 1−T+pT2 |
| 7 | C1 | 1−T |
good | 5 | C22 | 1−8T2+p2T4 |
| 11 | C22 | 1+3T2+p2T4 |
| 13 | C22 | 1+9T2+p2T4 |
| 17 | C22 | 1−22T2+p2T4 |
| 19 | C2 | (1+3T+pT2)2 |
| 23 | C2 | (1−6T+pT2)(1+6T+pT2) |
| 29 | C2×C2 | (1+5T+pT2)(1+9T+pT2) |
| 31 | C2×C2 | (1−3T+pT2)(1+8T+pT2) |
| 37 | C2×C2 | (1−8T+pT2)(1+3T+pT2) |
| 41 | C22 | 1+31T2+p2T4 |
| 43 | C22 | 1−68T2+p2T4 |
| 47 | C2×C2 | (1−4T+pT2)(1+2T+pT2) |
| 53 | C2×C2 | (1−3T+pT2)(1+7T+pT2) |
| 59 | C2×C2 | (1−2T+pT2)(1+3T+pT2) |
| 61 | C22 | 1+29T2+p2T4 |
| 67 | C22 | 1+32T2+p2T4 |
| 71 | C22 | 1−86T2+p2T4 |
| 73 | C22 | 1−88T2+p2T4 |
| 79 | C22 | 1+117T2+p2T4 |
| 83 | C2×C2 | (1−2T+pT2)(1+4T+pT2) |
| 89 | C22 | 1+65T2+p2T4 |
| 97 | C22 | 1+36T2+p2T4 |
show more | | |
show less | | |
L(s)=p∏ j=1∏4(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.542535040781039612494445646059, −7.898054090850495389633143027672, −7.64588185306719147061055876738, −7.19675747119123704152837612803, −6.48249917012102815535190335274, −6.18306273735141484451776377242, −5.47349157307834204550827486455, −5.19506344531750168930858623922, −4.48489371954854980466563637664, −3.88010194101076767996684853810, −3.49358032731442054253158539592, −2.67002041621380146562851251198, −2.22775970655050359414209924387, −1.45093646265834648153230174659, 0,
1.45093646265834648153230174659, 2.22775970655050359414209924387, 2.67002041621380146562851251198, 3.49358032731442054253158539592, 3.88010194101076767996684853810, 4.48489371954854980466563637664, 5.19506344531750168930858623922, 5.47349157307834204550827486455, 6.18306273735141484451776377242, 6.48249917012102815535190335274, 7.19675747119123704152837612803, 7.64588185306719147061055876738, 7.898054090850495389633143027672, 8.542535040781039612494445646059