L(s) = 1 | + 2·3-s − 7-s + 3·9-s − 8·19-s − 2·21-s − 6·25-s + 4·27-s − 20·29-s + 16·31-s + 12·37-s − 16·47-s + 49-s − 20·53-s − 16·57-s − 24·59-s − 3·63-s − 12·75-s + 5·81-s − 24·83-s − 40·87-s + 32·93-s − 4·109-s + 24·111-s + 36·113-s − 22·121-s + 127-s + 131-s + ⋯ |
L(s) = 1 | + 1.15·3-s − 0.377·7-s + 9-s − 1.83·19-s − 0.436·21-s − 6/5·25-s + 0.769·27-s − 3.71·29-s + 2.87·31-s + 1.97·37-s − 2.33·47-s + 1/7·49-s − 2.74·53-s − 2.11·57-s − 3.12·59-s − 0.377·63-s − 1.38·75-s + 5/9·81-s − 2.63·83-s − 4.28·87-s + 3.31·93-s − 0.383·109-s + 2.27·111-s + 3.38·113-s − 2·121-s + 0.0887·127-s + 0.0873·131-s + ⋯ |
Λ(s)=(=(395136s/2ΓC(s)2L(s)−Λ(2−s)
Λ(s)=(=(395136s/2ΓC(s+1/2)2L(s)−Λ(1−s)
Degree: |
4 |
Conductor: |
395136
= 27⋅32⋅73
|
Sign: |
−1
|
Analytic conductor: |
25.1942 |
Root analytic conductor: |
2.24039 |
Motivic weight: |
1 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
1
|
Selberg data: |
(4, 395136, ( :1/2,1/2), −1)
|
Particular Values
L(1) |
= |
0 |
L(21) |
= |
0 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | | 1 |
| 3 | C1 | (1−T)2 |
| 7 | C1 | 1+T |
good | 5 | C2 | (1−2T+pT2)(1+2T+pT2) |
| 11 | C2 | (1+pT2)2 |
| 13 | C2 | (1−6T+pT2)(1+6T+pT2) |
| 17 | C2 | (1−2T+pT2)(1+2T+pT2) |
| 19 | C2 | (1+4T+pT2)2 |
| 23 | C2 | (1−4T+pT2)(1+4T+pT2) |
| 29 | C2 | (1+10T+pT2)2 |
| 31 | C2 | (1−8T+pT2)2 |
| 37 | C2 | (1−6T+pT2)2 |
| 41 | C2 | (1−2T+pT2)(1+2T+pT2) |
| 43 | C2 | (1−4T+pT2)(1+4T+pT2) |
| 47 | C2 | (1+8T+pT2)2 |
| 53 | C2 | (1+10T+pT2)2 |
| 59 | C2 | (1+12T+pT2)2 |
| 61 | C2 | (1−2T+pT2)(1+2T+pT2) |
| 67 | C2 | (1−12T+pT2)(1+12T+pT2) |
| 71 | C2 | (1−12T+pT2)(1+12T+pT2) |
| 73 | C2 | (1−14T+pT2)(1+14T+pT2) |
| 79 | C2 | (1−8T+pT2)(1+8T+pT2) |
| 83 | C2 | (1+12T+pT2)2 |
| 89 | C2 | (1−2T+pT2)(1+2T+pT2) |
| 97 | C2 | (1−10T+pT2)(1+10T+pT2) |
show more | | |
show less | | |
L(s)=p∏ j=1∏4(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.289231676437400116460418770344, −7.917190719920927542416951015280, −7.84194967359953188564623556072, −7.13572102783324715252694770569, −6.54428519689900750892915035611, −6.05800461819552664757143425288, −5.90015243373728427076887013140, −4.81364713899235799057960760690, −4.35622436888448856514855173618, −4.09990139504038953260193041491, −3.10934300001651305626809863177, −3.06416831077517725944120442154, −1.98451470429642242976214434683, −1.70572377211895013061556457420, 0,
1.70572377211895013061556457420, 1.98451470429642242976214434683, 3.06416831077517725944120442154, 3.10934300001651305626809863177, 4.09990139504038953260193041491, 4.35622436888448856514855173618, 4.81364713899235799057960760690, 5.90015243373728427076887013140, 6.05800461819552664757143425288, 6.54428519689900750892915035611, 7.13572102783324715252694770569, 7.84194967359953188564623556072, 7.917190719920927542416951015280, 8.289231676437400116460418770344