L(s) = 1 | − 2·5-s − 2·11-s − 8·19-s − 25-s − 4·29-s + 16·31-s − 12·41-s − 2·49-s + 4·55-s − 8·59-s − 20·61-s + 16·71-s − 8·79-s − 28·89-s + 16·95-s − 20·101-s + 28·109-s + 3·121-s + 12·125-s + 127-s + 131-s + 137-s + 139-s + 8·145-s + 149-s + 151-s − 32·155-s + ⋯ |
L(s) = 1 | − 0.894·5-s − 0.603·11-s − 1.83·19-s − 1/5·25-s − 0.742·29-s + 2.87·31-s − 1.87·41-s − 2/7·49-s + 0.539·55-s − 1.04·59-s − 2.56·61-s + 1.89·71-s − 0.900·79-s − 2.96·89-s + 1.64·95-s − 1.99·101-s + 2.68·109-s + 3/11·121-s + 1.07·125-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + 0.664·145-s + 0.0819·149-s + 0.0813·151-s − 2.57·155-s + ⋯ |
Λ(s)=(=(15681600s/2ΓC(s)2L(s)Λ(2−s)
Λ(s)=(=(15681600s/2ΓC(s+1/2)2L(s)Λ(1−s)
Degree: |
4 |
Conductor: |
15681600
= 26⋅34⋅52⋅112
|
Sign: |
1
|
Analytic conductor: |
999.872 |
Root analytic conductor: |
5.62323 |
Motivic weight: |
1 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
2
|
Selberg data: |
(4, 15681600, ( :1/2,1/2), 1)
|
Particular Values
L(1) |
= |
0 |
L(21) |
= |
0 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | | 1 |
| 3 | | 1 |
| 5 | C2 | 1+2T+pT2 |
| 11 | C1 | (1+T)2 |
good | 7 | C22 | 1+2T2+p2T4 |
| 13 | C2 | (1−4T+pT2)(1+4T+pT2) |
| 17 | C2 | (1−8T+pT2)(1+8T+pT2) |
| 19 | C2 | (1+4T+pT2)2 |
| 23 | C22 | 1−10T2+p2T4 |
| 29 | C2 | (1+2T+pT2)2 |
| 31 | C2 | (1−8T+pT2)2 |
| 37 | C22 | 1−10T2+p2T4 |
| 41 | C2 | (1+6T+pT2)2 |
| 43 | C22 | 1+58T2+p2T4 |
| 47 | C22 | 1+6T2+p2T4 |
| 53 | C2 | (1−pT2)2 |
| 59 | C2 | (1+4T+pT2)2 |
| 61 | C2 | (1+10T+pT2)2 |
| 67 | C22 | 1−130T2+p2T4 |
| 71 | C2 | (1−8T+pT2)2 |
| 73 | C22 | 1−142T2+p2T4 |
| 79 | C2 | (1+4T+pT2)2 |
| 83 | C22 | 1−150T2+p2T4 |
| 89 | C2 | (1+14T+pT2)2 |
| 97 | C22 | 1−178T2+p2T4 |
show more | | |
show less | | |
L(s)=p∏ j=1∏4(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.390077121471355053278739533051, −8.094005497106503424522686677155, −7.46098434412460710736999700070, −7.38423699253185673021647901859, −6.67664847513532635198327944940, −6.52940496700225220335212698709, −6.12650605190121258613463840327, −5.76071479032182738164383061399, −5.18471647514324138086839513350, −4.76669528937552966059545611232, −4.41388260512417558592231944777, −4.24087541192893065647347719401, −3.58617630609164311183359368232, −3.25374408795945736250518516221, −2.71120007214133344256004293538, −2.34095725083537300450962399157, −1.69763026056002695589171623761, −1.14268767624092829376826341943, 0, 0,
1.14268767624092829376826341943, 1.69763026056002695589171623761, 2.34095725083537300450962399157, 2.71120007214133344256004293538, 3.25374408795945736250518516221, 3.58617630609164311183359368232, 4.24087541192893065647347719401, 4.41388260512417558592231944777, 4.76669528937552966059545611232, 5.18471647514324138086839513350, 5.76071479032182738164383061399, 6.12650605190121258613463840327, 6.52940496700225220335212698709, 6.67664847513532635198327944940, 7.38423699253185673021647901859, 7.46098434412460710736999700070, 8.094005497106503424522686677155, 8.390077121471355053278739533051