L(s) = 1 | − 2·2-s + 3·4-s + 2·7-s − 4·8-s + 6·11-s − 10·13-s − 4·14-s + 5·16-s − 2·19-s − 12·22-s + 20·26-s + 6·28-s + 6·29-s − 8·31-s − 6·32-s + 2·37-s + 4·38-s + 12·41-s − 4·43-s + 18·44-s + 12·47-s + 49-s − 30·52-s + 6·53-s − 8·56-s − 12·58-s + 18·59-s + ⋯ |
L(s) = 1 | − 1.41·2-s + 3/2·4-s + 0.755·7-s − 1.41·8-s + 1.80·11-s − 2.77·13-s − 1.06·14-s + 5/4·16-s − 0.458·19-s − 2.55·22-s + 3.92·26-s + 1.13·28-s + 1.11·29-s − 1.43·31-s − 1.06·32-s + 0.328·37-s + 0.648·38-s + 1.87·41-s − 0.609·43-s + 2.71·44-s + 1.75·47-s + 1/7·49-s − 4.16·52-s + 0.824·53-s − 1.06·56-s − 1.57·58-s + 2.34·59-s + ⋯ |
Λ(s)=(=(16402500s/2ΓC(s)2L(s)Λ(2−s)
Λ(s)=(=(16402500s/2ΓC(s+1/2)2L(s)Λ(1−s)
Degree: |
4 |
Conductor: |
16402500
= 22⋅38⋅54
|
Sign: |
1
|
Analytic conductor: |
1045.83 |
Root analytic conductor: |
5.68677 |
Motivic weight: |
1 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(4, 16402500, ( :1/2,1/2), 1)
|
Particular Values
L(1) |
≈ |
1.500452786 |
L(21) |
≈ |
1.500452786 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | C1 | (1+T)2 |
| 3 | | 1 |
| 5 | | 1 |
good | 7 | D4 | 1−2T+3T2−2pT3+p2T4 |
| 11 | D4 | 1−6T+28T2−6pT3+p2T4 |
| 13 | D4 | 1+10T+48T2+10pT3+p2T4 |
| 17 | C22 | 1+31T2+p2T4 |
| 19 | D4 | 1+2T+36T2+2pT3+p2T4 |
| 23 | C22 | 1−2T2+p2T4 |
| 29 | D4 | 1−6T+64T2−6pT3+p2T4 |
| 31 | D4 | 1+8T+66T2+8pT3+p2T4 |
| 37 | D4 | 1−2T+48T2−2pT3+p2T4 |
| 41 | D4 | 1−12T+91T2−12pT3+p2T4 |
| 43 | D4 | 1+4T+42T2+4pT3+p2T4 |
| 47 | D4 | 1−12T+127T2−12pT3+p2T4 |
| 53 | D4 | 1−6T+112T2−6pT3+p2T4 |
| 59 | D4 | 1−18T+196T2−18pT3+p2T4 |
| 61 | D4 | 1+8T+30T2+8pT3+p2T4 |
| 67 | D4 | 1−2T+108T2−2pT3+p2T4 |
| 71 | C22 | 1+34T2+p2T4 |
| 73 | D4 | 1+10T+63T2+10pT3+p2T4 |
| 79 | C2 | (1−5T+pT2)2 |
| 83 | D4 | 1+18T+172T2+18pT3+p2T4 |
| 89 | D4 | 1−12T+187T2−12pT3+p2T4 |
| 97 | D4 | 1−2T+147T2−2pT3+p2T4 |
show more | | |
show less | | |
L(s)=p∏ j=1∏4(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.585961035340322910504969741762, −8.564351939549586200275490031057, −7.63378963683121853855758676117, −7.60553535900320545667296771853, −7.24133422572765208007956838028, −7.16243791595589116813123827045, −6.46886008021186023190180983011, −6.26717189261945367055548223165, −5.77997415909167863345592406906, −5.31642141141855173206294673717, −4.79132564062844985577578188614, −4.59348328407234204001486845554, −3.92196839120839761454897008847, −3.74738704736386788635380242209, −2.77204138034596061285246910137, −2.62505839480781160542173399591, −1.96826623906596701698077805252, −1.81182661570116069200964044476, −0.899992437945576909093392677124, −0.55819194998023650950123426304,
0.55819194998023650950123426304, 0.899992437945576909093392677124, 1.81182661570116069200964044476, 1.96826623906596701698077805252, 2.62505839480781160542173399591, 2.77204138034596061285246910137, 3.74738704736386788635380242209, 3.92196839120839761454897008847, 4.59348328407234204001486845554, 4.79132564062844985577578188614, 5.31642141141855173206294673717, 5.77997415909167863345592406906, 6.26717189261945367055548223165, 6.46886008021186023190180983011, 7.16243791595589116813123827045, 7.24133422572765208007956838028, 7.60553535900320545667296771853, 7.63378963683121853855758676117, 8.564351939549586200275490031057, 8.585961035340322910504969741762