L(s) = 1 | − 4-s + 16-s + 8·19-s + 18·29-s − 8·31-s − 12·41-s − 2·49-s − 2·61-s − 64-s + 24·71-s − 8·76-s + 32·79-s − 6·89-s + 12·101-s − 22·109-s − 18·116-s − 22·121-s + 8·124-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + 12·164-s + ⋯ |
L(s) = 1 | − 1/2·4-s + 1/4·16-s + 1.83·19-s + 3.34·29-s − 1.43·31-s − 1.87·41-s − 2/7·49-s − 0.256·61-s − 1/8·64-s + 2.84·71-s − 0.917·76-s + 3.60·79-s − 0.635·89-s + 1.19·101-s − 2.10·109-s − 1.67·116-s − 2·121-s + 0.718·124-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + 0.0819·149-s + 0.0813·151-s + 0.0798·157-s + 0.0783·163-s + 0.937·164-s + ⋯ |
Λ(s)=(=(16402500s/2ΓC(s)2L(s)Λ(2−s)
Λ(s)=(=(16402500s/2ΓC(s+1/2)2L(s)Λ(1−s)
Degree: |
4 |
Conductor: |
16402500
= 22⋅38⋅54
|
Sign: |
1
|
Analytic conductor: |
1045.83 |
Root analytic conductor: |
5.68677 |
Motivic weight: |
1 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(4, 16402500, ( :1/2,1/2), 1)
|
Particular Values
L(1) |
≈ |
2.575988944 |
L(21) |
≈ |
2.575988944 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | C2 | 1+T2 |
| 3 | | 1 |
| 5 | | 1 |
good | 7 | C22 | 1+2T2+p2T4 |
| 11 | C2 | (1+pT2)2 |
| 13 | C22 | 1−25T2+p2T4 |
| 17 | C22 | 1−25T2+p2T4 |
| 19 | C2 | (1−4T+pT2)2 |
| 23 | C2 | (1−pT2)2 |
| 29 | C2 | (1−9T+pT2)2 |
| 31 | C2 | (1+4T+pT2)2 |
| 37 | C22 | 1−73T2+p2T4 |
| 41 | C2 | (1+6T+pT2)2 |
| 43 | C22 | 1−22T2+p2T4 |
| 47 | C22 | 1+50T2+p2T4 |
| 53 | C22 | 1−70T2+p2T4 |
| 59 | C2 | (1+pT2)2 |
| 61 | C2 | (1+T+pT2)2 |
| 67 | C22 | 1−118T2+p2T4 |
| 71 | C2 | (1−12T+pT2)2 |
| 73 | C22 | 1−25T2+p2T4 |
| 79 | C2 | (1−16T+pT2)2 |
| 83 | C22 | 1−22T2+p2T4 |
| 89 | C2 | (1+3T+pT2)2 |
| 97 | C22 | 1−190T2+p2T4 |
show more | | |
show less | | |
L(s)=p∏ j=1∏4(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.568898047053907878572376957310, −8.116066877666922280138122953717, −8.052227604401445531077485653725, −7.66960146563822627235602019293, −7.01268029498040075469767635507, −6.85895891960306442098594212485, −6.44285066467025587181054171199, −6.15985282688146409377175111943, −5.39834659508785558255424498877, −5.25821767358497785555253714993, −4.94375701648568252727273119844, −4.63673060107450965376658497772, −3.91698048710023497064247946627, −3.66355961316262205148517182955, −3.18236732006126239065697112126, −2.85068910397812692199959396366, −2.24789322602034699438186367725, −1.63088216983547463506067505073, −1.01922391665599618006517759318, −0.55821438895858008299415781681,
0.55821438895858008299415781681, 1.01922391665599618006517759318, 1.63088216983547463506067505073, 2.24789322602034699438186367725, 2.85068910397812692199959396366, 3.18236732006126239065697112126, 3.66355961316262205148517182955, 3.91698048710023497064247946627, 4.63673060107450965376658497772, 4.94375701648568252727273119844, 5.25821767358497785555253714993, 5.39834659508785558255424498877, 6.15985282688146409377175111943, 6.44285066467025587181054171199, 6.85895891960306442098594212485, 7.01268029498040075469767635507, 7.66960146563822627235602019293, 8.052227604401445531077485653725, 8.116066877666922280138122953717, 8.568898047053907878572376957310