Properties

Label 4-4050e2-1.1-c1e2-0-21
Degree $4$
Conductor $16402500$
Sign $1$
Analytic cond. $1045.83$
Root an. cond. $5.68677$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·2-s + 3·4-s + 4·7-s − 4·8-s + 4·13-s − 8·14-s + 5·16-s + 10·19-s − 8·26-s + 12·28-s + 4·31-s − 6·32-s − 8·37-s − 20·38-s + 18·41-s + 10·43-s − 12·47-s + 4·49-s + 12·52-s − 12·53-s − 16·56-s − 6·59-s + 16·61-s − 8·62-s + 7·64-s − 14·67-s + 12·71-s + ⋯
L(s)  = 1  − 1.41·2-s + 3/2·4-s + 1.51·7-s − 1.41·8-s + 1.10·13-s − 2.13·14-s + 5/4·16-s + 2.29·19-s − 1.56·26-s + 2.26·28-s + 0.718·31-s − 1.06·32-s − 1.31·37-s − 3.24·38-s + 2.81·41-s + 1.52·43-s − 1.75·47-s + 4/7·49-s + 1.66·52-s − 1.64·53-s − 2.13·56-s − 0.781·59-s + 2.04·61-s − 1.01·62-s + 7/8·64-s − 1.71·67-s + 1.42·71-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 16402500 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 16402500 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(16402500\)    =    \(2^{2} \cdot 3^{8} \cdot 5^{4}\)
Sign: $1$
Analytic conductor: \(1045.83\)
Root analytic conductor: \(5.68677\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 16402500,\ (\ :1/2, 1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(2.346904419\)
\(L(\frac12)\) \(\approx\) \(2.346904419\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2$C_1$ \( ( 1 + T )^{2} \)
3 \( 1 \)
5 \( 1 \)
good7$D_{4}$ \( 1 - 4 T + 12 T^{2} - 4 p T^{3} + p^{2} T^{4} \)
11$C_2^2$ \( 1 - 2 T^{2} + p^{2} T^{4} \)
13$D_{4}$ \( 1 - 4 T + 24 T^{2} - 4 p T^{3} + p^{2} T^{4} \)
17$C_2^2$ \( 1 + 10 T^{2} + p^{2} T^{4} \)
19$D_{4}$ \( 1 - 10 T + 3 p T^{2} - 10 p T^{3} + p^{2} T^{4} \)
23$C_2^2$ \( 1 + 40 T^{2} + p^{2} T^{4} \)
29$C_2^2$ \( 1 + 52 T^{2} + p^{2} T^{4} \)
31$D_{4}$ \( 1 - 4 T + 60 T^{2} - 4 p T^{3} + p^{2} T^{4} \)
37$D_{4}$ \( 1 + 8 T + 36 T^{2} + 8 p T^{3} + p^{2} T^{4} \)
41$C_2$ \( ( 1 - 9 T + p T^{2} )^{2} \)
43$D_{4}$ \( 1 - 10 T + 105 T^{2} - 10 p T^{3} + p^{2} T^{4} \)
47$D_{4}$ \( 1 + 12 T + 106 T^{2} + 12 p T^{3} + p^{2} T^{4} \)
53$D_{4}$ \( 1 + 12 T + 136 T^{2} + 12 p T^{3} + p^{2} T^{4} \)
59$D_{4}$ \( 1 + 6 T + 121 T^{2} + 6 p T^{3} + p^{2} T^{4} \)
61$C_2$ \( ( 1 - 8 T + p T^{2} )^{2} \)
67$C_2^2$ \( 1 + 14 T + 129 T^{2} + 14 p T^{3} + p^{2} T^{4} \)
71$D_{4}$ \( 1 - 12 T + 124 T^{2} - 12 p T^{3} + p^{2} T^{4} \)
73$C_2$ \( ( 1 + T + p T^{2} )^{2} \)
79$D_{4}$ \( 1 - 4 T - 54 T^{2} - 4 p T^{3} + p^{2} T^{4} \)
83$D_{4}$ \( 1 + 6 T + 169 T^{2} + 6 p T^{3} + p^{2} T^{4} \)
89$C_2$ \( ( 1 + 9 T + p T^{2} )^{2} \)
97$D_{4}$ \( 1 + 2 T + 99 T^{2} + 2 p T^{3} + p^{2} T^{4} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.565122914265422413180519727831, −8.236331521113562060104445980852, −7.84280256884599765358098708901, −7.79560081188642338553291523229, −7.27353266277905106986250896092, −7.09917935813281311790445618491, −6.34152847393911674712762172820, −6.28586800201560105273862277356, −5.61616455572404207731135870286, −5.43891589921856121528684256221, −4.95828145449799586796628422329, −4.50019367787690069354192185985, −4.01923011670138581226104531694, −3.50140165235192517846193406946, −2.94195459979969887835445949365, −2.72717946068575890670220038511, −1.86452554272646001298394071269, −1.58123396705195023043790620993, −1.08780858008953016579553312217, −0.65850855089594296065068152211, 0.65850855089594296065068152211, 1.08780858008953016579553312217, 1.58123396705195023043790620993, 1.86452554272646001298394071269, 2.72717946068575890670220038511, 2.94195459979969887835445949365, 3.50140165235192517846193406946, 4.01923011670138581226104531694, 4.50019367787690069354192185985, 4.95828145449799586796628422329, 5.43891589921856121528684256221, 5.61616455572404207731135870286, 6.28586800201560105273862277356, 6.34152847393911674712762172820, 7.09917935813281311790445618491, 7.27353266277905106986250896092, 7.79560081188642338553291523229, 7.84280256884599765358098708901, 8.236331521113562060104445980852, 8.565122914265422413180519727831

Graph of the $Z$-function along the critical line