L(s) = 1 | − 2·2-s + 3·4-s + 4·7-s − 4·8-s + 4·13-s − 8·14-s + 5·16-s + 10·19-s − 8·26-s + 12·28-s + 4·31-s − 6·32-s − 8·37-s − 20·38-s + 18·41-s + 10·43-s − 12·47-s + 4·49-s + 12·52-s − 12·53-s − 16·56-s − 6·59-s + 16·61-s − 8·62-s + 7·64-s − 14·67-s + 12·71-s + ⋯ |
L(s) = 1 | − 1.41·2-s + 3/2·4-s + 1.51·7-s − 1.41·8-s + 1.10·13-s − 2.13·14-s + 5/4·16-s + 2.29·19-s − 1.56·26-s + 2.26·28-s + 0.718·31-s − 1.06·32-s − 1.31·37-s − 3.24·38-s + 2.81·41-s + 1.52·43-s − 1.75·47-s + 4/7·49-s + 1.66·52-s − 1.64·53-s − 2.13·56-s − 0.781·59-s + 2.04·61-s − 1.01·62-s + 7/8·64-s − 1.71·67-s + 1.42·71-s + ⋯ |
Λ(s)=(=(16402500s/2ΓC(s)2L(s)Λ(2−s)
Λ(s)=(=(16402500s/2ΓC(s+1/2)2L(s)Λ(1−s)
Degree: |
4 |
Conductor: |
16402500
= 22⋅38⋅54
|
Sign: |
1
|
Analytic conductor: |
1045.83 |
Root analytic conductor: |
5.68677 |
Motivic weight: |
1 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(4, 16402500, ( :1/2,1/2), 1)
|
Particular Values
L(1) |
≈ |
2.346904419 |
L(21) |
≈ |
2.346904419 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | C1 | (1+T)2 |
| 3 | | 1 |
| 5 | | 1 |
good | 7 | D4 | 1−4T+12T2−4pT3+p2T4 |
| 11 | C22 | 1−2T2+p2T4 |
| 13 | D4 | 1−4T+24T2−4pT3+p2T4 |
| 17 | C22 | 1+10T2+p2T4 |
| 19 | D4 | 1−10T+3pT2−10pT3+p2T4 |
| 23 | C22 | 1+40T2+p2T4 |
| 29 | C22 | 1+52T2+p2T4 |
| 31 | D4 | 1−4T+60T2−4pT3+p2T4 |
| 37 | D4 | 1+8T+36T2+8pT3+p2T4 |
| 41 | C2 | (1−9T+pT2)2 |
| 43 | D4 | 1−10T+105T2−10pT3+p2T4 |
| 47 | D4 | 1+12T+106T2+12pT3+p2T4 |
| 53 | D4 | 1+12T+136T2+12pT3+p2T4 |
| 59 | D4 | 1+6T+121T2+6pT3+p2T4 |
| 61 | C2 | (1−8T+pT2)2 |
| 67 | C22 | 1+14T+129T2+14pT3+p2T4 |
| 71 | D4 | 1−12T+124T2−12pT3+p2T4 |
| 73 | C2 | (1+T+pT2)2 |
| 79 | D4 | 1−4T−54T2−4pT3+p2T4 |
| 83 | D4 | 1+6T+169T2+6pT3+p2T4 |
| 89 | C2 | (1+9T+pT2)2 |
| 97 | D4 | 1+2T+99T2+2pT3+p2T4 |
show more | | |
show less | | |
L(s)=p∏ j=1∏4(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.565122914265422413180519727831, −8.236331521113562060104445980852, −7.84280256884599765358098708901, −7.79560081188642338553291523229, −7.27353266277905106986250896092, −7.09917935813281311790445618491, −6.34152847393911674712762172820, −6.28586800201560105273862277356, −5.61616455572404207731135870286, −5.43891589921856121528684256221, −4.95828145449799586796628422329, −4.50019367787690069354192185985, −4.01923011670138581226104531694, −3.50140165235192517846193406946, −2.94195459979969887835445949365, −2.72717946068575890670220038511, −1.86452554272646001298394071269, −1.58123396705195023043790620993, −1.08780858008953016579553312217, −0.65850855089594296065068152211,
0.65850855089594296065068152211, 1.08780858008953016579553312217, 1.58123396705195023043790620993, 1.86452554272646001298394071269, 2.72717946068575890670220038511, 2.94195459979969887835445949365, 3.50140165235192517846193406946, 4.01923011670138581226104531694, 4.50019367787690069354192185985, 4.95828145449799586796628422329, 5.43891589921856121528684256221, 5.61616455572404207731135870286, 6.28586800201560105273862277356, 6.34152847393911674712762172820, 7.09917935813281311790445618491, 7.27353266277905106986250896092, 7.79560081188642338553291523229, 7.84280256884599765358098708901, 8.236331521113562060104445980852, 8.565122914265422413180519727831