L(s) = 1 | + 2·2-s + 3·4-s − 4·7-s + 4·8-s − 4·13-s − 8·14-s + 5·16-s − 2·19-s − 6·23-s − 8·26-s − 12·28-s + 4·31-s + 6·32-s − 16·37-s − 4·38-s − 4·43-s − 12·46-s − 6·47-s + 49-s − 12·52-s − 18·53-s − 16·56-s + 4·61-s + 8·62-s + 7·64-s − 16·67-s + 12·71-s + ⋯ |
L(s) = 1 | + 1.41·2-s + 3/2·4-s − 1.51·7-s + 1.41·8-s − 1.10·13-s − 2.13·14-s + 5/4·16-s − 0.458·19-s − 1.25·23-s − 1.56·26-s − 2.26·28-s + 0.718·31-s + 1.06·32-s − 2.63·37-s − 0.648·38-s − 0.609·43-s − 1.76·46-s − 0.875·47-s + 1/7·49-s − 1.66·52-s − 2.47·53-s − 2.13·56-s + 0.512·61-s + 1.01·62-s + 7/8·64-s − 1.95·67-s + 1.42·71-s + ⋯ |
Λ(s)=(=(16402500s/2ΓC(s)2L(s)Λ(2−s)
Λ(s)=(=(16402500s/2ΓC(s+1/2)2L(s)Λ(1−s)
Degree: |
4 |
Conductor: |
16402500
= 22⋅38⋅54
|
Sign: |
1
|
Analytic conductor: |
1045.83 |
Root analytic conductor: |
5.68677 |
Motivic weight: |
1 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
2
|
Selberg data: |
(4, 16402500, ( :1/2,1/2), 1)
|
Particular Values
L(1) |
= |
0 |
L(21) |
= |
0 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | C1 | (1−T)2 |
| 3 | | 1 |
| 5 | | 1 |
good | 7 | D4 | 1+4T+15T2+4pT3+p2T4 |
| 11 | C22 | 1+10T2+p2T4 |
| 13 | D4 | 1+4T+27T2+4pT3+p2T4 |
| 17 | C22 | 1+22T2+p2T4 |
| 19 | D4 | 1+2T−9T2+2pT3+p2T4 |
| 23 | D4 | 1+6T+43T2+6pT3+p2T4 |
| 29 | C22 | 1+10T2+p2T4 |
| 31 | D4 | 1−4T+54T2−4pT3+p2T4 |
| 37 | C2 | (1+8T+pT2)2 |
| 41 | C22 | 1+55T2+p2T4 |
| 43 | D4 | 1+4T+78T2+4pT3+p2T4 |
| 47 | D4 | 1+6T+91T2+6pT3+p2T4 |
| 53 | D4 | 1+18T+175T2+18pT3+p2T4 |
| 59 | C22 | 1+43T2+p2T4 |
| 61 | D4 | 1−4T+18T2−4pT3+p2T4 |
| 67 | C2 | (1+8T+pT2)2 |
| 71 | C2 | (1−6T+pT2)2 |
| 73 | D4 | 1−8T+54T2−8pT3+p2T4 |
| 79 | D4 | 1+8T+66T2+8pT3+p2T4 |
| 83 | D4 | 1+24T+298T2+24pT3+p2T4 |
| 89 | C2 | (1+12T+pT2)2 |
| 97 | D4 | 1+16T+210T2+16pT3+p2T4 |
show more | | |
show less | | |
L(s)=p∏ j=1∏4(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.016948402030064565863561924130, −7.930634814744980147377337556239, −7.28316109088332046334786287334, −6.99697371067983458645161584759, −6.58212775219323659447922185535, −6.49082823515108118429248150928, −6.08115872466775017042183637807, −5.56386009620794927755614690211, −5.26347936668625295831886516238, −4.92071088805352290561763617906, −4.29280623860668206962206143488, −4.23010252821686291171883985852, −3.47343377950167578428961548105, −3.34933732230151683333544520629, −2.78919757863597125203275196827, −2.58180466540315450577668951260, −1.69868254046163333588646506862, −1.59137209604272726220549827532, 0, 0,
1.59137209604272726220549827532, 1.69868254046163333588646506862, 2.58180466540315450577668951260, 2.78919757863597125203275196827, 3.34933732230151683333544520629, 3.47343377950167578428961548105, 4.23010252821686291171883985852, 4.29280623860668206962206143488, 4.92071088805352290561763617906, 5.26347936668625295831886516238, 5.56386009620794927755614690211, 6.08115872466775017042183637807, 6.49082823515108118429248150928, 6.58212775219323659447922185535, 6.99697371067983458645161584759, 7.28316109088332046334786287334, 7.930634814744980147377337556239, 8.016948402030064565863561924130