Properties

Label 4-40e4-1.1-c1e2-0-7
Degree $4$
Conductor $2560000$
Sign $1$
Analytic cond. $163.227$
Root an. cond. $3.57436$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3·9-s − 2·11-s + 2·19-s − 16·29-s + 20·31-s − 6·41-s + 10·49-s + 16·59-s − 20·61-s − 24·71-s − 12·79-s + 18·89-s + 6·99-s − 12·101-s + 28·109-s − 19·121-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + 167-s + 10·169-s − 6·171-s + ⋯
L(s)  = 1  − 9-s − 0.603·11-s + 0.458·19-s − 2.97·29-s + 3.59·31-s − 0.937·41-s + 10/7·49-s + 2.08·59-s − 2.56·61-s − 2.84·71-s − 1.35·79-s + 1.90·89-s + 0.603·99-s − 1.19·101-s + 2.68·109-s − 1.72·121-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + 0.0819·149-s + 0.0813·151-s + 0.0798·157-s + 0.0783·163-s + 0.0773·167-s + 0.769·169-s − 0.458·171-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 2560000 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2560000 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(2560000\)    =    \(2^{12} \cdot 5^{4}\)
Sign: $1$
Analytic conductor: \(163.227\)
Root analytic conductor: \(3.57436\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 2560000,\ (\ :1/2, 1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.279381415\)
\(L(\frac12)\) \(\approx\) \(1.279381415\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
5 \( 1 \)
good3$C_2^2$ \( 1 + p T^{2} + p^{2} T^{4} \)
7$C_2^2$ \( 1 - 10 T^{2} + p^{2} T^{4} \)
11$C_2$ \( ( 1 + T + p T^{2} )^{2} \)
13$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
17$C_2^2$ \( 1 - 9 T^{2} + p^{2} T^{4} \)
19$C_2$ \( ( 1 - T + p T^{2} )^{2} \)
23$C_2^2$ \( 1 - 42 T^{2} + p^{2} T^{4} \)
29$C_2$ \( ( 1 + 8 T + p T^{2} )^{2} \)
31$C_2$ \( ( 1 - 10 T + p T^{2} )^{2} \)
37$C_2^2$ \( 1 - 38 T^{2} + p^{2} T^{4} \)
41$C_2$ \( ( 1 + 3 T + p T^{2} )^{2} \)
43$C_2^2$ \( 1 - 70 T^{2} + p^{2} T^{4} \)
47$C_2^2$ \( 1 - 78 T^{2} + p^{2} T^{4} \)
53$C_2^2$ \( 1 - 70 T^{2} + p^{2} T^{4} \)
59$C_2$ \( ( 1 - 8 T + p T^{2} )^{2} \)
61$C_2$ \( ( 1 + 10 T + p T^{2} )^{2} \)
67$C_2^2$ \( 1 - 133 T^{2} + p^{2} T^{4} \)
71$C_2$ \( ( 1 + 12 T + p T^{2} )^{2} \)
73$C_2^2$ \( 1 - 137 T^{2} + p^{2} T^{4} \)
79$C_2$ \( ( 1 + 6 T + p T^{2} )^{2} \)
83$C_2^2$ \( 1 + 3 T^{2} + p^{2} T^{4} \)
89$C_2$ \( ( 1 - 9 T + p T^{2} )^{2} \)
97$C_2^2$ \( 1 + 2 T^{2} + p^{2} T^{4} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.558458105415433116124152083751, −9.172233008589101017225964234474, −8.746598502943036555869545077196, −8.513325630923809575768664163890, −7.894062691419872661851029667603, −7.81236172682069523212773415653, −7.09745507008846527341507454473, −7.01624557358276738604468088384, −6.20563951633160571426882134350, −5.82959345824437763961307185915, −5.70906291585543162607006596579, −5.12463359720506145016660818974, −4.54389805745358666724377655179, −4.30551214951101528837659676053, −3.50108155382465016065228418309, −3.12842516438000579818624841082, −2.66411158964718331863472444671, −2.12685928326681266783326889312, −1.36799207208325963679370961364, −0.44636699284835547915522807559, 0.44636699284835547915522807559, 1.36799207208325963679370961364, 2.12685928326681266783326889312, 2.66411158964718331863472444671, 3.12842516438000579818624841082, 3.50108155382465016065228418309, 4.30551214951101528837659676053, 4.54389805745358666724377655179, 5.12463359720506145016660818974, 5.70906291585543162607006596579, 5.82959345824437763961307185915, 6.20563951633160571426882134350, 7.01624557358276738604468088384, 7.09745507008846527341507454473, 7.81236172682069523212773415653, 7.894062691419872661851029667603, 8.513325630923809575768664163890, 8.746598502943036555869545077196, 9.172233008589101017225964234474, 9.558458105415433116124152083751

Graph of the $Z$-function along the critical line