L(s) = 1 | − 2·5-s − 9-s + 2·13-s − 2·17-s + 8·19-s − 8·23-s − 3·25-s − 10·37-s + 2·45-s − 5·49-s + 8·59-s − 4·65-s − 8·79-s − 8·81-s + 8·83-s + 4·85-s − 16·95-s + 8·103-s − 18·109-s + 4·113-s + 16·115-s − 2·117-s − 22·121-s + 10·125-s + 127-s + 131-s + 137-s + ⋯ |
L(s) = 1 | − 0.894·5-s − 1/3·9-s + 0.554·13-s − 0.485·17-s + 1.83·19-s − 1.66·23-s − 3/5·25-s − 1.64·37-s + 0.298·45-s − 5/7·49-s + 1.04·59-s − 0.496·65-s − 0.900·79-s − 8/9·81-s + 0.878·83-s + 0.433·85-s − 1.64·95-s + 0.788·103-s − 1.72·109-s + 0.376·113-s + 1.49·115-s − 0.184·117-s − 2·121-s + 0.894·125-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + ⋯ |
Λ(s)=(=(173056s/2ΓC(s)2L(s)−Λ(2−s)
Λ(s)=(=(173056s/2ΓC(s+1/2)2L(s)−Λ(1−s)
Degree: |
4 |
Conductor: |
173056
= 210⋅132
|
Sign: |
−1
|
Analytic conductor: |
11.0342 |
Root analytic conductor: |
1.82257 |
Motivic weight: |
1 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
yes
|
Self-dual: |
yes
|
Analytic rank: |
1
|
Selberg data: |
(4, 173056, ( :1/2,1/2), −1)
|
Particular Values
L(1) |
= |
0 |
L(21) |
= |
0 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | | 1 |
| 13 | C2 | 1−2T+pT2 |
good | 3 | C22 | 1+T2+p2T4 |
| 5 | C2×C2 | (1−T+pT2)(1+3T+pT2) |
| 7 | C2 | (1−3T+pT2)(1+3T+pT2) |
| 11 | C2 | (1+pT2)2 |
| 17 | C2×C2 | (1−3T+pT2)(1+5T+pT2) |
| 19 | C2×C2 | (1−8T+pT2)(1+pT2) |
| 23 | C2×C2 | (1+pT2)(1+8T+pT2) |
| 29 | C22 | 1−10T2+p2T4 |
| 31 | C22 | 1−18T2+p2T4 |
| 37 | C2×C2 | (1+3T+pT2)(1+7T+pT2) |
| 41 | C2 | (1−6T+pT2)(1+6T+pT2) |
| 43 | C22 | 1−63T2+p2T4 |
| 47 | C22 | 1+5T2+p2T4 |
| 53 | C2 | (1−10T+pT2)(1+10T+pT2) |
| 59 | C2×C2 | (1−8T+pT2)(1+pT2) |
| 61 | C22 | 1−10T2+p2T4 |
| 67 | C2 | (1−8T+pT2)(1+8T+pT2) |
| 71 | C22 | 1−11T2+p2T4 |
| 73 | C2 | (1−10T+pT2)(1+10T+pT2) |
| 79 | C2×C2 | (1+pT2)(1+8T+pT2) |
| 83 | C2×C2 | (1−8T+pT2)(1+pT2) |
| 89 | C2 | (1−6T+pT2)(1+6T+pT2) |
| 97 | C22 | 1+62T2+p2T4 |
show more | | |
show less | | |
L(s)=p∏ j=1∏4(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.875695304099684896281182707766, −8.420945047513015779175356935662, −7.935387512355577643087283909151, −7.65104784567127020197799894934, −7.06455621115253245281313072600, −6.56480351600023000949595423956, −5.91753095980449469480233466188, −5.47293856182412718696639704946, −4.93230086189046741029681749520, −4.13991592642427677936275988561, −3.71352235547140785875774871076, −3.24216290472028332104415975278, −2.33989940612046940156518447462, −1.40740953620497473077259660886, 0,
1.40740953620497473077259660886, 2.33989940612046940156518447462, 3.24216290472028332104415975278, 3.71352235547140785875774871076, 4.13991592642427677936275988561, 4.93230086189046741029681749520, 5.47293856182412718696639704946, 5.91753095980449469480233466188, 6.56480351600023000949595423956, 7.06455621115253245281313072600, 7.65104784567127020197799894934, 7.935387512355577643087283909151, 8.420945047513015779175356935662, 8.875695304099684896281182707766