Properties

Label 4-416e2-1.1-c1e2-0-17
Degree $4$
Conductor $173056$
Sign $-1$
Analytic cond. $11.0342$
Root an. cond. $1.82257$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·5-s − 9-s + 2·13-s − 2·17-s + 8·19-s − 8·23-s − 3·25-s − 10·37-s + 2·45-s − 5·49-s + 8·59-s − 4·65-s − 8·79-s − 8·81-s + 8·83-s + 4·85-s − 16·95-s + 8·103-s − 18·109-s + 4·113-s + 16·115-s − 2·117-s − 22·121-s + 10·125-s + 127-s + 131-s + 137-s + ⋯
L(s)  = 1  − 0.894·5-s − 1/3·9-s + 0.554·13-s − 0.485·17-s + 1.83·19-s − 1.66·23-s − 3/5·25-s − 1.64·37-s + 0.298·45-s − 5/7·49-s + 1.04·59-s − 0.496·65-s − 0.900·79-s − 8/9·81-s + 0.878·83-s + 0.433·85-s − 1.64·95-s + 0.788·103-s − 1.72·109-s + 0.376·113-s + 1.49·115-s − 0.184·117-s − 2·121-s + 0.894·125-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 173056 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 173056 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(173056\)    =    \(2^{10} \cdot 13^{2}\)
Sign: $-1$
Analytic conductor: \(11.0342\)
Root analytic conductor: \(1.82257\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((4,\ 173056,\ (\ :1/2, 1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
13$C_2$ \( 1 - 2 T + p T^{2} \)
good3$C_2^2$ \( 1 + T^{2} + p^{2} T^{4} \)
5$C_2$$\times$$C_2$ \( ( 1 - T + p T^{2} )( 1 + 3 T + p T^{2} ) \)
7$C_2$ \( ( 1 - 3 T + p T^{2} )( 1 + 3 T + p T^{2} ) \)
11$C_2$ \( ( 1 + p T^{2} )^{2} \)
17$C_2$$\times$$C_2$ \( ( 1 - 3 T + p T^{2} )( 1 + 5 T + p T^{2} ) \)
19$C_2$$\times$$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + p T^{2} ) \)
23$C_2$$\times$$C_2$ \( ( 1 + p T^{2} )( 1 + 8 T + p T^{2} ) \)
29$C_2^2$ \( 1 - 10 T^{2} + p^{2} T^{4} \)
31$C_2^2$ \( 1 - 18 T^{2} + p^{2} T^{4} \)
37$C_2$$\times$$C_2$ \( ( 1 + 3 T + p T^{2} )( 1 + 7 T + p T^{2} ) \)
41$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
43$C_2^2$ \( 1 - 63 T^{2} + p^{2} T^{4} \)
47$C_2^2$ \( 1 + 5 T^{2} + p^{2} T^{4} \)
53$C_2$ \( ( 1 - 10 T + p T^{2} )( 1 + 10 T + p T^{2} ) \)
59$C_2$$\times$$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + p T^{2} ) \)
61$C_2^2$ \( 1 - 10 T^{2} + p^{2} T^{4} \)
67$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + 8 T + p T^{2} ) \)
71$C_2^2$ \( 1 - 11 T^{2} + p^{2} T^{4} \)
73$C_2$ \( ( 1 - 10 T + p T^{2} )( 1 + 10 T + p T^{2} ) \)
79$C_2$$\times$$C_2$ \( ( 1 + p T^{2} )( 1 + 8 T + p T^{2} ) \)
83$C_2$$\times$$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + p T^{2} ) \)
89$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
97$C_2^2$ \( 1 + 62 T^{2} + p^{2} T^{4} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.875695304099684896281182707766, −8.420945047513015779175356935662, −7.935387512355577643087283909151, −7.65104784567127020197799894934, −7.06455621115253245281313072600, −6.56480351600023000949595423956, −5.91753095980449469480233466188, −5.47293856182412718696639704946, −4.93230086189046741029681749520, −4.13991592642427677936275988561, −3.71352235547140785875774871076, −3.24216290472028332104415975278, −2.33989940612046940156518447462, −1.40740953620497473077259660886, 0, 1.40740953620497473077259660886, 2.33989940612046940156518447462, 3.24216290472028332104415975278, 3.71352235547140785875774871076, 4.13991592642427677936275988561, 4.93230086189046741029681749520, 5.47293856182412718696639704946, 5.91753095980449469480233466188, 6.56480351600023000949595423956, 7.06455621115253245281313072600, 7.65104784567127020197799894934, 7.935387512355577643087283909151, 8.420945047513015779175356935662, 8.875695304099684896281182707766

Graph of the $Z$-function along the critical line