L(s) = 1 | − 5·9-s + 2·17-s − 4·23-s + 25-s + 4·29-s − 8·43-s + 3·49-s − 8·53-s − 4·61-s + 16·81-s − 8·101-s − 24·103-s − 24·107-s − 12·113-s − 6·121-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s − 10·153-s + 157-s + 163-s + 167-s − 13·169-s + 173-s + ⋯ |
L(s) = 1 | − 5/3·9-s + 0.485·17-s − 0.834·23-s + 1/5·25-s + 0.742·29-s − 1.21·43-s + 3/7·49-s − 1.09·53-s − 0.512·61-s + 16/9·81-s − 0.796·101-s − 2.36·103-s − 2.32·107-s − 1.12·113-s − 0.545·121-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + 0.0819·149-s + 0.0813·151-s − 0.808·153-s + 0.0798·157-s + 0.0783·163-s + 0.0773·167-s − 169-s + 0.0760·173-s + ⋯ |
Λ(s)=(=(173056s/2ΓC(s)2L(s)−Λ(2−s)
Λ(s)=(=(173056s/2ΓC(s+1/2)2L(s)−Λ(1−s)
Degree: |
4 |
Conductor: |
173056
= 210⋅132
|
Sign: |
−1
|
Analytic conductor: |
11.0342 |
Root analytic conductor: |
1.82257 |
Motivic weight: |
1 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
yes
|
Self-dual: |
yes
|
Analytic rank: |
1
|
Selberg data: |
(4, 173056, ( :1/2,1/2), −1)
|
Particular Values
L(1) |
= |
0 |
L(21) |
= |
0 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | | 1 |
| 13 | C2 | 1+pT2 |
good | 3 | C2 | (1−T+pT2)(1+T+pT2) |
| 5 | C22 | 1−T2+p2T4 |
| 7 | C22 | 1−3T2+p2T4 |
| 11 | C2 | (1−4T+pT2)(1+4T+pT2) |
| 17 | C2×C2 | (1−5T+pT2)(1+3T+pT2) |
| 19 | C22 | 1−30T2+p2T4 |
| 23 | C2×C2 | (1−2T+pT2)(1+6T+pT2) |
| 29 | C2×C2 | (1−4T+pT2)(1+pT2) |
| 31 | C22 | 1−18T2+p2T4 |
| 37 | C22 | 1−9T2+p2T4 |
| 41 | C22 | 1+30T2+p2T4 |
| 43 | C2×C2 | (1+T+pT2)(1+7T+pT2) |
| 47 | C22 | 1+29T2+p2T4 |
| 53 | C2×C2 | (1−2T+pT2)(1+10T+pT2) |
| 59 | C22 | 1−86T2+p2T4 |
| 61 | C2×C2 | (1−4T+pT2)(1+8T+pT2) |
| 67 | C22 | 1+6T2+p2T4 |
| 71 | C22 | 1+101T2+p2T4 |
| 73 | C22 | 1−6T2+p2T4 |
| 79 | C2 | (1−6T+pT2)(1+6T+pT2) |
| 83 | C22 | 1+50T2+p2T4 |
| 89 | C22 | 1+50T2+p2T4 |
| 97 | C22 | 1+78T2+p2T4 |
show more | | |
show less | | |
L(s)=p∏ j=1∏4(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.890805373925362280572583914759, −8.381593766283564489885375705803, −8.096534916038210786810792941115, −7.70699316295590148500513561381, −6.88392073007506590632417046671, −6.46954662366170450227658639590, −5.98381614820652598219418737618, −5.40654780037387177486273649398, −5.08898276619219494971575841335, −4.28122546056690067414668236975, −3.63396173636179798667458470862, −2.95409560333340104380359722028, −2.51912929515045464280600200249, −1.44056631643362660336973086543, 0,
1.44056631643362660336973086543, 2.51912929515045464280600200249, 2.95409560333340104380359722028, 3.63396173636179798667458470862, 4.28122546056690067414668236975, 5.08898276619219494971575841335, 5.40654780037387177486273649398, 5.98381614820652598219418737618, 6.46954662366170450227658639590, 6.88392073007506590632417046671, 7.70699316295590148500513561381, 8.096534916038210786810792941115, 8.381593766283564489885375705803, 8.890805373925362280572583914759