Properties

Label 4-416e2-1.1-c1e2-0-18
Degree $4$
Conductor $173056$
Sign $-1$
Analytic cond. $11.0342$
Root an. cond. $1.82257$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 5·9-s + 2·17-s − 4·23-s + 25-s + 4·29-s − 8·43-s + 3·49-s − 8·53-s − 4·61-s + 16·81-s − 8·101-s − 24·103-s − 24·107-s − 12·113-s − 6·121-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s − 10·153-s + 157-s + 163-s + 167-s − 13·169-s + 173-s + ⋯
L(s)  = 1  − 5/3·9-s + 0.485·17-s − 0.834·23-s + 1/5·25-s + 0.742·29-s − 1.21·43-s + 3/7·49-s − 1.09·53-s − 0.512·61-s + 16/9·81-s − 0.796·101-s − 2.36·103-s − 2.32·107-s − 1.12·113-s − 0.545·121-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + 0.0819·149-s + 0.0813·151-s − 0.808·153-s + 0.0798·157-s + 0.0783·163-s + 0.0773·167-s − 169-s + 0.0760·173-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 173056 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 173056 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(173056\)    =    \(2^{10} \cdot 13^{2}\)
Sign: $-1$
Analytic conductor: \(11.0342\)
Root analytic conductor: \(1.82257\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((4,\ 173056,\ (\ :1/2, 1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
13$C_2$ \( 1 + p T^{2} \)
good3$C_2$ \( ( 1 - T + p T^{2} )( 1 + T + p T^{2} ) \)
5$C_2^2$ \( 1 - T^{2} + p^{2} T^{4} \)
7$C_2^2$ \( 1 - 3 T^{2} + p^{2} T^{4} \)
11$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
17$C_2$$\times$$C_2$ \( ( 1 - 5 T + p T^{2} )( 1 + 3 T + p T^{2} ) \)
19$C_2^2$ \( 1 - 30 T^{2} + p^{2} T^{4} \)
23$C_2$$\times$$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
29$C_2$$\times$$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + p T^{2} ) \)
31$C_2^2$ \( 1 - 18 T^{2} + p^{2} T^{4} \)
37$C_2^2$ \( 1 - 9 T^{2} + p^{2} T^{4} \)
41$C_2^2$ \( 1 + 30 T^{2} + p^{2} T^{4} \)
43$C_2$$\times$$C_2$ \( ( 1 + T + p T^{2} )( 1 + 7 T + p T^{2} ) \)
47$C_2^2$ \( 1 + 29 T^{2} + p^{2} T^{4} \)
53$C_2$$\times$$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 10 T + p T^{2} ) \)
59$C_2^2$ \( 1 - 86 T^{2} + p^{2} T^{4} \)
61$C_2$$\times$$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 8 T + p T^{2} ) \)
67$C_2^2$ \( 1 + 6 T^{2} + p^{2} T^{4} \)
71$C_2^2$ \( 1 + 101 T^{2} + p^{2} T^{4} \)
73$C_2^2$ \( 1 - 6 T^{2} + p^{2} T^{4} \)
79$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
83$C_2^2$ \( 1 + 50 T^{2} + p^{2} T^{4} \)
89$C_2^2$ \( 1 + 50 T^{2} + p^{2} T^{4} \)
97$C_2^2$ \( 1 + 78 T^{2} + p^{2} T^{4} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.890805373925362280572583914759, −8.381593766283564489885375705803, −8.096534916038210786810792941115, −7.70699316295590148500513561381, −6.88392073007506590632417046671, −6.46954662366170450227658639590, −5.98381614820652598219418737618, −5.40654780037387177486273649398, −5.08898276619219494971575841335, −4.28122546056690067414668236975, −3.63396173636179798667458470862, −2.95409560333340104380359722028, −2.51912929515045464280600200249, −1.44056631643362660336973086543, 0, 1.44056631643362660336973086543, 2.51912929515045464280600200249, 2.95409560333340104380359722028, 3.63396173636179798667458470862, 4.28122546056690067414668236975, 5.08898276619219494971575841335, 5.40654780037387177486273649398, 5.98381614820652598219418737618, 6.46954662366170450227658639590, 6.88392073007506590632417046671, 7.70699316295590148500513561381, 8.096534916038210786810792941115, 8.381593766283564489885375705803, 8.890805373925362280572583914759

Graph of the $Z$-function along the critical line