L(s) = 1 | − 5·9-s + 2·17-s − 4·23-s + 25-s + 4·29-s − 8·43-s + 3·49-s − 8·53-s − 4·61-s + 16·81-s − 8·101-s − 24·103-s − 24·107-s − 12·113-s − 6·121-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s − 10·153-s + 157-s + 163-s + 167-s − 13·169-s + 173-s + ⋯ |
L(s) = 1 | − 5/3·9-s + 0.485·17-s − 0.834·23-s + 1/5·25-s + 0.742·29-s − 1.21·43-s + 3/7·49-s − 1.09·53-s − 0.512·61-s + 16/9·81-s − 0.796·101-s − 2.36·103-s − 2.32·107-s − 1.12·113-s − 0.545·121-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + 0.0819·149-s + 0.0813·151-s − 0.808·153-s + 0.0798·157-s + 0.0783·163-s + 0.0773·167-s − 169-s + 0.0760·173-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 173056 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 173056 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(=\) |
\(0\) |
\(L(\frac12)\) |
\(=\) |
\(0\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $\Gal(F_p)$ | $F_p(T)$ |
---|
bad | 2 | | \( 1 \) |
| 13 | $C_2$ | \( 1 + p T^{2} \) |
good | 3 | $C_2$ | \( ( 1 - T + p T^{2} )( 1 + T + p T^{2} ) \) |
| 5 | $C_2^2$ | \( 1 - T^{2} + p^{2} T^{4} \) |
| 7 | $C_2^2$ | \( 1 - 3 T^{2} + p^{2} T^{4} \) |
| 11 | $C_2$ | \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \) |
| 17 | $C_2$$\times$$C_2$ | \( ( 1 - 5 T + p T^{2} )( 1 + 3 T + p T^{2} ) \) |
| 19 | $C_2^2$ | \( 1 - 30 T^{2} + p^{2} T^{4} \) |
| 23 | $C_2$$\times$$C_2$ | \( ( 1 - 2 T + p T^{2} )( 1 + 6 T + p T^{2} ) \) |
| 29 | $C_2$$\times$$C_2$ | \( ( 1 - 4 T + p T^{2} )( 1 + p T^{2} ) \) |
| 31 | $C_2^2$ | \( 1 - 18 T^{2} + p^{2} T^{4} \) |
| 37 | $C_2^2$ | \( 1 - 9 T^{2} + p^{2} T^{4} \) |
| 41 | $C_2^2$ | \( 1 + 30 T^{2} + p^{2} T^{4} \) |
| 43 | $C_2$$\times$$C_2$ | \( ( 1 + T + p T^{2} )( 1 + 7 T + p T^{2} ) \) |
| 47 | $C_2^2$ | \( 1 + 29 T^{2} + p^{2} T^{4} \) |
| 53 | $C_2$$\times$$C_2$ | \( ( 1 - 2 T + p T^{2} )( 1 + 10 T + p T^{2} ) \) |
| 59 | $C_2^2$ | \( 1 - 86 T^{2} + p^{2} T^{4} \) |
| 61 | $C_2$$\times$$C_2$ | \( ( 1 - 4 T + p T^{2} )( 1 + 8 T + p T^{2} ) \) |
| 67 | $C_2^2$ | \( 1 + 6 T^{2} + p^{2} T^{4} \) |
| 71 | $C_2^2$ | \( 1 + 101 T^{2} + p^{2} T^{4} \) |
| 73 | $C_2^2$ | \( 1 - 6 T^{2} + p^{2} T^{4} \) |
| 79 | $C_2$ | \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \) |
| 83 | $C_2^2$ | \( 1 + 50 T^{2} + p^{2} T^{4} \) |
| 89 | $C_2^2$ | \( 1 + 50 T^{2} + p^{2} T^{4} \) |
| 97 | $C_2^2$ | \( 1 + 78 T^{2} + p^{2} T^{4} \) |
show more | | |
show less | | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.890805373925362280572583914759, −8.381593766283564489885375705803, −8.096534916038210786810792941115, −7.70699316295590148500513561381, −6.88392073007506590632417046671, −6.46954662366170450227658639590, −5.98381614820652598219418737618, −5.40654780037387177486273649398, −5.08898276619219494971575841335, −4.28122546056690067414668236975, −3.63396173636179798667458470862, −2.95409560333340104380359722028, −2.51912929515045464280600200249, −1.44056631643362660336973086543, 0,
1.44056631643362660336973086543, 2.51912929515045464280600200249, 2.95409560333340104380359722028, 3.63396173636179798667458470862, 4.28122546056690067414668236975, 5.08898276619219494971575841335, 5.40654780037387177486273649398, 5.98381614820652598219418737618, 6.46954662366170450227658639590, 6.88392073007506590632417046671, 7.70699316295590148500513561381, 8.096534916038210786810792941115, 8.381593766283564489885375705803, 8.890805373925362280572583914759