L(s) = 1 | + 3-s − 4·5-s − 5·7-s + 9·9-s − 21·11-s − 26·13-s − 4·15-s + 25·17-s − 21·19-s − 5·21-s − 15·23-s − 38·25-s + 26·27-s − 39·29-s − 20·31-s − 21·33-s + 20·35-s − 61·37-s − 26·39-s + 3·41-s + 41·43-s − 36·45-s − 164·47-s + 49·49-s + 25·51-s + 84·55-s − 21·57-s + ⋯ |
L(s) = 1 | + 1/3·3-s − 4/5·5-s − 5/7·7-s + 9-s − 1.90·11-s − 2·13-s − 0.266·15-s + 1.47·17-s − 1.10·19-s − 0.238·21-s − 0.652·23-s − 1.51·25-s + 0.962·27-s − 1.34·29-s − 0.645·31-s − 0.636·33-s + 4/7·35-s − 1.64·37-s − 2/3·39-s + 3/41·41-s + 0.953·43-s − 4/5·45-s − 3.48·47-s + 49-s + 0.490·51-s + 1.52·55-s − 0.368·57-s + ⋯ |
Λ(s)=(=(173056s/2ΓC(s)2L(s)Λ(3−s)
Λ(s)=(=(173056s/2ΓC(s+1)2L(s)Λ(1−s)
Degree: |
4 |
Conductor: |
173056
= 210⋅132
|
Sign: |
1
|
Analytic conductor: |
128.486 |
Root analytic conductor: |
3.36677 |
Motivic weight: |
2 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(4, 173056, ( :1,1), 1)
|
Particular Values
L(23) |
≈ |
0.03151317709 |
L(21) |
≈ |
0.03151317709 |
L(2) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | | 1 |
| 13 | C1 | (1+pT)2 |
good | 3 | C22 | 1−T−8T2−p2T3+p4T4 |
| 5 | C2 | (1+2T+p2T2)2 |
| 7 | C22 | 1+5T−24T2+5p2T3+p4T4 |
| 11 | C22 | 1+21T+268T2+21p2T3+p4T4 |
| 17 | C22 | 1−25T+336T2−25p2T3+p4T4 |
| 19 | C22 | 1+21T+508T2+21p2T3+p4T4 |
| 23 | C22 | 1+15T+604T2+15p2T3+p4T4 |
| 29 | C22 | 1+39T+1348T2+39p2T3+p4T4 |
| 31 | C2 | (1+10T+p2T2)2 |
| 37 | C22 | 1+61T+2352T2+61p2T3+p4T4 |
| 41 | C22 | 1−3T+1684T2−3p2T3+p4T4 |
| 43 | C22 | 1−41T−168T2−41p2T3+p4T4 |
| 47 | C2 | (1+82T+p2T2)2 |
| 53 | C22 | 1−3890T2+p4T4 |
| 59 | C22 | 1+93T+6364T2+93p2T3+p4T4 |
| 61 | C22 | 1−105T+7396T2−105p2T3+p4T4 |
| 67 | C22 | 1+21T+4636T2+21p2T3+p4T4 |
| 71 | C22 | 1+29T−4200T2+29p2T3+p4T4 |
| 73 | C22 | 1−8930T2+p4T4 |
| 79 | C22 | 1+3070T2+p4T4 |
| 83 | C1×C1 | (1−pT)2(1+pT)2 |
| 89 | C22 | 1+69T+9508T2+69p2T3+p4T4 |
| 97 | C22 | 1−3T+9412T2−3p2T3+p4T4 |
show more | | |
show less | | |
L(s)=p∏ j=1∏4(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.29040295736550283285667293205, −10.44135609810443481103088926613, −10.33343532601651005766173931593, −9.885735228627100200078535242408, −9.640426674169075849771594702961, −9.039102680267200962145239292550, −8.183338022836763910977438536758, −7.906812469792846892192862485741, −7.68297991626566231873232377160, −7.08598502259984240722640107972, −6.85992885243061578066788485321, −5.68731308123808046635422054628, −5.64998744928129489452084170215, −4.73252169514818720679078227558, −4.48109302048125822098895603557, −3.49201665856261041914624576306, −3.32560028170798888975323935755, −2.32577728057659925821661903861, −1.88035305647597642884520458780, −0.06938897454619178712173752298,
0.06938897454619178712173752298, 1.88035305647597642884520458780, 2.32577728057659925821661903861, 3.32560028170798888975323935755, 3.49201665856261041914624576306, 4.48109302048125822098895603557, 4.73252169514818720679078227558, 5.64998744928129489452084170215, 5.68731308123808046635422054628, 6.85992885243061578066788485321, 7.08598502259984240722640107972, 7.68297991626566231873232377160, 7.906812469792846892192862485741, 8.183338022836763910977438536758, 9.039102680267200962145239292550, 9.640426674169075849771594702961, 9.885735228627100200078535242408, 10.33343532601651005766173931593, 10.44135609810443481103088926613, 11.29040295736550283285667293205